SUMMARY REPORT
711 WEST CARDINAL LANE (FORMERLY 1468 WEST CARDINAL LANE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid-Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and



Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
711 WEST CARDINAL LANE (FORMERLY 1468 WEST CARDINAL LANE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0
Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid- Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and



**Naval Facilities Engineering Command Atlantic** 

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:



CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

**JUNE 2021** 



# **Table of Contents**

| 1.0        | INTRODUC   | TION                                        | 1 |
|------------|------------|---------------------------------------------|---|
| 1.1        |            | ND INFORMATION                              |   |
| 1.2        | UST REMO   | VAL AND ASSESSMENT PROCESS                  | 2 |
| 2.0        | SAMPLING   | ACTIVITIES AND RESULTS                      | 4 |
| 2.1        |            | VAL AND SOIL SAMPLING                       |   |
| 2.2<br>2.3 |            | TICAL RESULTS                               |   |
| 2.3        |            | ATER SAMPLING                               |   |
| 2.5        |            | SAMPLING                                    | - |
| 2.6        | Soil Gas A | ANALYTICAL RESULTS                          | 6 |
| 3.0        | PROPERTY   | STATUS                                      | 7 |
| 4.0        | REFERENC   | ES                                          | 7 |
|            |            |                                             |   |
|            |            |                                             |   |
|            |            | Tables                                      |   |
| Table      | 1          | Laboratory Analytical Results - Soil        |   |
| Table      | 2          | Laboratory Analytical Results - Groundwater |   |
| Table      | 3          | Laboratory Analytical Results - Vapor       |   |
|            |            | Appendices                                  |   |
| Appen      | ndix A     | Multi-Media Selection Process for LBMH      |   |
| Appen      | ıdix B     | UST Assessment Report                       |   |
| Appen      | ıdix C     | Laboratory Analytical Report - Groundwater  |   |
| Appen      | ıdix D     | Laboratory Analytical Report - Vapor        |   |
| Appen      | ndix E     | Regulatory Correspondence                   |   |
|            |            |                                             |   |



#### **List of Acronyms**

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

ft feet

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

PPV Public-Private Venture

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UFP SAP Uniform Federal Policy Sampling and Analysis Plan
USEPA United States Environmental Protection Agency

UST underground storage tank
VISL vapor intrusion screening level



#### 1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

#### 1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area



is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

In 2015, the Public-Private Venture (PPV) responsible for the management of the residential area at LBMH initiated a plan to replace outdated homes in the LBMH area. The plan includes the demolition of existing homes and subsequent construction of new homes. In discussions with the PPV it was revealed that construction of the new homes could occur on portions of the property where the USTs were formerly located. In response to this plan, MCAS Beaufort assessed subsurface soil gas concentrations in the area of the former USTs at select properties within the demolition areas. The subject property of this report is one of the properties within the planned demolition area which was selected for a soil gas evaluation. It should be noted that the house at the subject property has since been demolished and this property is an empty lot. There are no current plans for construction in this area.

#### 1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan* 



(QAPP) for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, 2016) and the Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management Division* (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

In accordance with the multi-media investigation selection process (Appendix A), groundwater analytical results are typically compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion into existing homes and the necessity for an investigation associated with this media. However, as previously stated, this property did not have an existing home and instead was among those selected for an evaluation of soil gas because of the planned demolition and construction activities.



#### 2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane). The sampling activities at 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) comprised a soil investigation, IGWA sampling, and a soil gas investigation. Details regarding the soil investigation at this site are provided in the SCDHEC UST Assessment Report – 1468 West Cardinal Lane (MCAS Beaufort, 2007). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the Investigation of Groundwater at Leaking Heating Oil UST Sites (Pandey Environmental, 2008). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C. Details regarding the vapor intrusion investigation at this site are provided in the Technical Memorandum – Soil Gas Sampling Results – October 2014 (Resolution Consultants, 2015). The laboratory report that includes the pertinent soil gas analytical results for this site is presented in Appendix D.

## 2.1 UST Removal and Soil Sampling

On August 16, 2006, a single 280 gallon heating oil UST was removed from 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane). The former UST location is indicated on the sketch in the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'0" bgs and a single soil sample was collected from that depth. An additional soil sample was collected from a side wall of the excavation. The samples were collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base and the side of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

### 2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report



presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated November 2, 2007, SCDHEC requested an IGWA for 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix E.

## 2.3 Groundwater Sampling

On July 30, 2008, a temporary monitoring well was installed at 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on the sketch in the UST Assessment Report (Appendix B). Further details are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites* (Pandey Environmental, 2008).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation, groundwater samples were collected using screen point sampling methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites* (Pandey Environmental, 2008).

### 2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.



The groundwater results collected from 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

## 2.5 Soil Gas Sampling

On October 2, 2014, a temporary subsurface soil gas well was installed at 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) in accordance with the SCDHEC approved *Sampling and Analysis Plan for Vapor Media* – *LBMH, MCAS Beaufort* (Resolution Consultants, 2015). *Uniform Federal Policy Sampling and Analysis Plan (UFP SAP) for Vapor Media* (Resolution Consultants, 2015). Soil gas sampling was conducted at this property to assess the potential risk for vapor intrusion associated with the possible construction of a new home on top of former the UST location. The soil gas well was placed in the same general location as the former heating oil UST and the IGWA sample location. The former UST location is indicated on the sketch in the UST Assessment Report (Appendix B). Further details are provided in the *Technical Memorandum* – *Soil Gas Sampling Results* – *October 2014* (Resolution Consultants, 2015).

The sampling strategy for this phase of the investigation required a one-time sampling event of the soil gas well. The subsurface soil gas well at 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) was sampled on October 8, 2014. A soil gas sample was collected and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of soil gas sampling, the temporary well was abandoned in accordance with the *UFP SAP for Vapor Media* (Resolution Consultants, 2015). Field forms are provided in the *Technical Memorandum – Soil Gas Sampling Results – October 2014* (Resolution Consultants, 2015).

### 2.6 Soil Gas Analytical Results

A summary of the laboratory analytical results and USEPA (United States Environmental Protection Agency) VISLs is presented in Table 3. A copy of the laboratory analytical data report is included in Appendix D.

The soil gas results collected from 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) were below the USEPA VISLs, which indicated that subsurface soil gas was not impacted by



COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

#### 3.0 PROPERTY STATUS

The house at 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) was demolished and the property is an empty lot. There are no current plans for construction in this area. Based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane). The NFA determination for groundwater was obtained in a letter dated December 8, 2008. Based on the analytical results for soil gas, it was determined that there was not a vapor intrusion concern at this property and a recommendation was made for no additional vapor intrusion assessment activities. SCDHEC approved the no further vapor intrusion investigation recommendation for 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane) in a letter dated March 10, 2015. SCDHEC's letters are provided in Appendix E.

#### 4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2007. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1468
  West Cardinal Lane, Laurel Bay Military Housing Area, August 2007.
- Pandey Environmental, LLC, 2008. *Investigation of Ground Water at Leaking Heating Oil UST Sites for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, November 2008.
- Resolution Consultants, 2015. *Technical Memorandum Soil Gas Sampling Results October*2014 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military
  Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, January
  2015.
- Resolution Consultants, 2015. *Uniform Federal Policy Sampling and Analysis Plan for Vapor Media, for Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, February 2015.



- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.
- United States Environmental Protection Agency, 2014. *USEPA OSWER Vapor Intrusion Assessment, Vapor Intrusion Screening Level Calculator, Version 3.3.1,* May 2014.

## **Tables**



#### Table 1

# Laboratory Analytical Results - Soil 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane)

#### Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

|                                 | (1)                              |                         | Results<br>Samples Collected 08/16/06 |  |  |  |
|---------------------------------|----------------------------------|-------------------------|---------------------------------------|--|--|--|
| Constituent                     | SCDHEC RBSLs (1)                 | 1468 Cardinal 01 Bottom | 1468 Cardinal 02 Side                 |  |  |  |
| Volatile Organic Compounds Anal | yzed by EPA Method 8260B (mg/kg) |                         |                                       |  |  |  |
| Benzene                         | 0.007                            | ND                      | ND                                    |  |  |  |
| Ethylbenzene                    | 1.15                             | 0.000458                | 0.000489                              |  |  |  |
| Naphthalene                     | 0.036                            | 0.00223                 | ND                                    |  |  |  |
| Toluene                         | 1.45                             | 0.00264                 | 0.000963                              |  |  |  |
| Xylenes, Total                  | 14.5                             | 0.00425                 | 0.00592                               |  |  |  |
| Semivolatile Organic Compounds  | Analyzed by EPA Method 8270C (mg | ı/kg)                   |                                       |  |  |  |
| Benzo(a)anthracene              | 0.066                            | 0.547                   | ND                                    |  |  |  |
| Benzo(b)fluoranthene            | 0.066                            | 0.283                   | ND                                    |  |  |  |
| Benzo(k)fluoranthene            | 0.066                            | 0.295                   | ND                                    |  |  |  |
| Chrysene                        | 0.066                            | 0.769                   | ND                                    |  |  |  |
| Dibenz(a,h)anthracene           | 0.066                            | ND                      | ND                                    |  |  |  |

## Notes:

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

<sup>&</sup>lt;sup>(1)</sup> South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 (SCDHEC, May 2001).

### Table 2

# Laboratory Analytical Results - Groundwater 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane)

## Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

| Constituent                             | SCDHEC RBSLs (1)            | Site-Specific<br>Groundwater VISLs<br>(µg/L) <sup>(2)</sup> | Results Sample Collected 07/30/08 |
|-----------------------------------------|-----------------------------|-------------------------------------------------------------|-----------------------------------|
| <b>Volatile Organic Compounds Analy</b> | zed by EPA Method 8260B (µ  | g/L)                                                        |                                   |
| Benzene                                 | 5                           | 16.24                                                       | ND                                |
| Ethylbenzene                            | 700                         | 45.95                                                       | ND                                |
| Naphthalene                             | 25                          | 29.33                                                       | 4.3                               |
| Toluene                                 | 1000                        | 105,445                                                     | ND                                |
| Xylenes, Total                          | 10,000                      | 2,133                                                       | ND                                |
| Semivolatile Organic Compounds <i>I</i> | analyzed by EPA Method 8270 | )D (μg/L)                                                   |                                   |
| Benzo(a)anthracene                      | 10                          | NA                                                          | ND                                |
| Benzo(b)fluoranthene                    | 10                          | NA                                                          | ND                                |
| Benzo(k)fluoranthene                    | 10                          | NA                                                          | ND                                |
| Chrysene                                | 10                          | NA                                                          | ND                                |
| Dibenz(a,h)anthracene                   | 10                          | NA                                                          | ND                                |

#### **Notes:**

- (1) South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 (SCDHEC, May 2001).
- (2) Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of  $1 \times 10^{-6}$ , a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - not applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

μg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

#### Table 3

# Laboratory Analytical Results - Vapor 711 West Cardinal Lane (Formerly 1468 West Cardinal Lane)

## Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

| Constituent Volatile Organic Compounds Analyze | USEPA VISL <sup>(1)</sup><br>d by USEPA Method TO-15 ( | Results<br>Sample Collected 10/08/14<br>(µg/m³) |
|------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
| Benzene                                        | 12                                                     | ND                                              |
| Toluene                                        | 17000                                                  | 0.28                                            |
| Ethylbenzene                                   | 37                                                     | ND                                              |
| m,p-Xylenes                                    | 350                                                    | ND                                              |
| m,p-Xylenes<br>o-Xylene                        | 350                                                    | ND                                              |
| Naphthalene                                    | 2.8                                                    | 0.68                                            |

#### **Notes:**

VISLs are based on a residual exposure scenario and a target risk level of  $1x10^{-6}$  and a hazard quotient of 0.1. Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the residential VISL.

USEPA - United States Environmental Protection Agency

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The vapor laboratory report is provided in Appendix D.

RBSL - Risk-Based Screening Level

μg/m<sup>3</sup> - micrograms per cubic meter

VISL - Vapor Intrusion Screening Level

<sup>&</sup>lt;sup>(1)</sup> United States Environmental Protection Agency Exterior Soil Gas Vapor Intrusion Screening Level (VISL) from VISL Calculator (Version 3.3.1, May 2014).

# Appendix A Multi-Media Selection Process for LBMH





**Appendix A - Multi-Media Selection Process for LBMH** 

# Appendix B UST Assessment Report



1468 CARDINAT

# Attachment 1 South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report



Submit Completed Form To:
UST Program
SCDHEC
2600 Bull Street
Columbia, South Carolina 29201
Telephone (803) 896-6240

|                                                                                 | Telephone (803) 896-6240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | RECES AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I. OWNERSHIP OF UST (S)                                                         | Total Marie Control of the Control o |
| Beaufort Military Compley<br>Owner Name (Corporation, Individual, Public Agence | y, Other) Housing Water Prince                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1510 LAUREL BAY BR                                                              | VD ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mailing Address Beaufort 5C                                                     | 29906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| City State                                                                      | Zip Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Area Code Telephone Nu                                                          | mber Kyle BROAD FOOT Contact Person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

II. SITE IDENTIFICATION AND LOCATION

N/A

Permit I.D. # Actus Lend Lense Construction

Facility Name or Company Site Identifier

1570 Langel Bay Blud

Street Address or State Road (as applicable)

Beanfort SC 29906

City ZIP County

# III. INSURANCE INFORMATION

| monies to pay for appropriate site rehabilitation activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at Permit ID # <u>may</u> qualify to receive state ties. Before participation is allowed in the State Clean-up tence of an environmental insurance policy is required. <u>This</u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Is there now, or has there ever been an insurance UST release? YES NO (check one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ce policy or other financial mechanism that covers this e)                                                                                                                         |
| If you answered YES to the above ques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion, please complete the following information:                                                                                                                                   |
| My policy provider is: The policy deductible is: The policy limit is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |
| If you have this type of insurance, please include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de a copy of the policy with this report.                                                                                                                                          |
| à                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | And                                                                                                                                                                                |
| IV. CERTIFICATION (To be signed at Land 1 of Land 2 of L | miliar with the information submitted in this and all                                                                                                                              |
| Name (Type or print.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |
| Signature To be completed by Notary Public:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |
| Sworn before me this day of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |
| (Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| Notary Public for the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | South Carolina                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |

Insurance Statement

|     | V. UST INFORMATION                                                    | Tank I     | Tank 2   | Tank 3    | Tank 4    | Tank 5   | Та   |
|-----|-----------------------------------------------------------------------|------------|----------|-----------|-----------|----------|------|
|     |                                                                       | #Z<br>DIBA |          |           |           |          |      |
|     | oduct(ex. Gas, Kerosene)                                              | VIDE       |          |           |           |          |      |
| C   | apacity. (ex. 1k, 2k)                                                 | 350g       |          |           |           |          | -    |
| Ag  | ge                                                                    |            |          |           |           |          |      |
| Co  | enstruction Material(ex. Steel, FRP)                                  | Steel      |          |           |           |          |      |
| Mo  | onth/Year of Last Use                                                 |            |          |           |           |          |      |
| De  | pth (ft.) To Base of Tank                                             |            |          |           |           |          |      |
| Sp  | ill Prevention Equipment Y/N                                          | N          |          |           |           |          |      |
| Ov  | verfill Prevention Equipment Y/N                                      | N          |          |           |           |          |      |
| Me  | ethod of Closure Removed Filled                                       | Remove     | /        |           |           |          |      |
| Da  | te Tanks Removed/Filled                                               | 8/16/8     |          |           |           |          |      |
| Vi  | sible Corrosion or Pitting Y/N                                        | N          |          |           |           |          | ľ    |
| Vis | sible Holes Y/N                                                       | N          |          |           |           |          | T    |
| Me  | ethod of disposal for any USTs removed from th                        | e ground ( | attach d | isposal m | anifests  |          |      |
|     | Recycling - Scrap Ste                                                 | rel        |          |           |           |          |      |
|     | ethod of disposal for any liquid petroleum, sludg<br>posal manifests) | es, or was | tewaters | removed   | l from th | e USTs ( | atta |
|     |                                                                       |            |          |           |           |          |      |
|     |                                                                       |            |          |           |           |          |      |

# VI. PIPING INFORMATION

|                                                    | Tank 1       | Tank 2   | Tank 3   | Tank 4     | Tank 5    | 7    |
|----------------------------------------------------|--------------|----------|----------|------------|-----------|------|
| Construction Material(ex. Steel, FRP)              | Steel        |          |          |            |           |      |
| Distance from UST to Dispenser                     | NIA          |          |          |            |           |      |
| Number of Dispensers                               | -0-          |          |          |            |           |      |
| Type of System Pressure or Suction                 | Electric     |          |          |            |           | -    |
| Was Piping Removed from the Ground? Y/N            | Pump         |          |          |            |           |      |
| Visible Corrosion or Pitting Y/N                   | N,           |          |          |            |           |      |
| Visible Holes Y/N                                  | 1            |          |          |            |           |      |
| Age                                                |              |          |          |            |           |      |
|                                                    |              |          |          |            |           | -    |
|                                                    |              |          |          |            |           |      |
| If any correction nitting or holes were observed   | describe the | logation | and avt  | ent for an | ch ninin  | a 17 |
| If any corrosion, pitting, or holes were observed, | describe the | location | and exte | ent for ea | ach pipin | g r  |
| If any corrosion, pitting, or holes were observed, | describe the | location | and exte | ent for ea | ich pipin | g n  |
| If any corrosion, pitting, or holes were observed, | describe the | location | and exte | ent for ea | ich pipin | g n  |
| If any corrosion, pitting, or holes were observed, | describe the | location | and exte | ent for ea | ach pipin | g n  |
| VII. BRIEF SITE DESCRIPTION AN                     |              |          | and exte | ent for ea | ich pipin | g n  |
| VII. BRIEF SITE DESCRIPTION AN                     | D HISTO      | ORY      |          |            |           | g m  |
|                                                    | D HISTO      | ORY      |          |            |           | g n  |
| VII. BRIEF SITE DESCRIPTION AN                     | D HISTO      | ORY      |          |            |           | g n  |
| VII. BRIEF SITE DESCRIPTION AN                     | D HISTO      | ORY      |          |            |           | g n  |

# VIII. SITE CONDITIONS

|                                                                                                                                                                                                                    | Yes | No | Unk |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|
| A. Were any petroleum-stained or contaminated soils found in the US excavation, soil borings, trenches, or monitoring wells?  If yes, indicate depth and location on the site map.                                 | Т   | 1  |     |
| <ul> <li>B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?</li> <li>If yes, indicate location on site map and describe the odor (strong, mild, etc.)</li> </ul> |     | 1  |     |
| C. Was water present in the UST excavation, soil borings, or trenches  If yes, how far below land surface (indicate location and depth)?                                                                           | ?   | 1  |     |
| D. Did contaminated soils remain stockpiled on site after closure?  If yes, indicate the stockpile location on the site map.  Name of DHEC representative authorizing soil removal:                                |     | 1  |     |
| E. Was a petroleum sheen or free product detected on any excavation or boring waters?  If yes, indicate location and thickness.                                                                                    |     | 1  |     |

#### IX. SAMPLE INFORMATION

SCDHEC Lab Certification Number DW: 84009002

A.

| Sample # | Location | Sample Type<br>(Soil/Water) | Soil Type<br>(Sand/Clay) | Depth* | Date/Time of<br>Collection | Collected<br>by        | OVA# |
|----------|----------|-----------------------------|--------------------------|--------|----------------------------|------------------------|------|
| 1        |          | 5                           |                          |        |                            | A. MANUCY              | ND   |
| 2        |          | 5                           |                          |        |                            | A. MANUCY<br>A. MANUCY | ND   |
| 3        |          |                             |                          |        |                            |                        |      |
| 4        |          |                             |                          |        |                            |                        |      |
| 5        |          |                             |                          |        |                            |                        |      |
| 6        |          |                             |                          |        |                            |                        |      |
| 7        |          |                             |                          |        |                            |                        |      |
| 8        |          |                             |                          |        |                            |                        |      |
| 9        |          |                             |                          |        |                            |                        |      |
| 10       |          |                             |                          |        |                            |                        |      |
| 11       |          |                             |                          |        |                            |                        |      |
| 12       |          |                             |                          |        |                            |                        |      |
| 13       |          |                             |                          |        |                            |                        |      |
| 14       |          |                             |                          |        |                            |                        |      |
| 15       |          |                             |                          |        |                            |                        |      |
| 16       |          |                             |                          |        |                            |                        |      |
| 17       |          |                             |                          |        |                            |                        |      |
| 18       |          |                             |                          |        |                            |                        |      |
| 19       |          |                             |                          |        |                            |                        |      |
| 20       |          |                             |                          |        |                            |                        |      |

<sup>\* =</sup> Depth Below the Surrounding Land Surface

# X.

# SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

| EP   | A Method 8260 B Volatile ORGANIC Compo<br>Presentative: Zea Sodium Bisulfate lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EFA  | METHOD 8270 Poly Aromatic Hydro CARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | - No Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DNe  | (1) SiDEWALL And ONE (1) Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SA   | (1) SiDEWALL And ONE (1) Bottom uple were secured from tank excavaraples were stoned and shipped in A sulated cooled w/ ICE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SA   | uples were stored and shipped in A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /N:  | sulated cooled w/ ice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17-5 | The state of the s |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# XI. RECEPTORS

|    |                                                                                                                                                                                                             | Yes | No  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| A. | Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?                                                                                                                |     | 311 |
|    | If yes, indicate type of receptor, distance, and direction on site map.                                                                                                                                     | 14  | 100 |
| B. | Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?                                                                                                         |     | ./  |
|    | If yes, indicate type of well, distance, and direction on site map.                                                                                                                                         |     | -   |
| C. | Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?                                                                                                           |     |     |
|    | If yes, indicate type of structure, distance, and direction on site map.                                                                                                                                    |     | 1   |
| D. | Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? |     |     |
|    | If yes, indicate the type of utility, distance, and direction on the site map.                                                                                                                              |     | 1   |
| E. | Has contaminated soil been identified at a depth less than 3 feet<br>below land surface in an area that is not capped by asphalt or<br>concrete?                                                            |     | /   |
|    | If yes, indicate the area of contaminated soil on the site map.                                                                                                                                             |     |     |

# SUMMARY OF ANALYSIS RESULTS

NIA

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

| CoC                   | SB-1 | SB-2  | SB-3  | SB-4  | SB-5  | SB-6  | SB-7  | SB-8   |
|-----------------------|------|-------|-------|-------|-------|-------|-------|--------|
| Benzene               |      |       |       |       |       |       |       |        |
| Toluene               |      |       |       | 13    |       |       |       |        |
| Ethylbenzene          |      |       |       |       |       |       | 0     |        |
| Xylenes               |      |       |       |       |       |       |       |        |
| Naphthalene           |      |       |       |       |       |       |       | Just 1 |
| Benzo(a)anthracene    |      |       |       |       |       |       |       |        |
| Benzo(b)flouranthene  |      |       |       |       |       |       |       |        |
| Benzo(k)flouranthene  |      |       |       |       |       |       |       |        |
| Chrysene              |      |       |       |       |       |       |       |        |
| Dibenz(a,h)anthracene |      |       |       |       |       |       |       |        |
| TPH (EPA 3550)        |      |       |       |       |       |       |       |        |
| CoC                   | SB-9 | SB-10 | SB-11 | SB-12 | SB-13 | SB-14 | SB-15 | SB-16  |
| Benzene               |      |       |       |       |       |       |       |        |
| Toluene               |      |       |       |       |       |       |       |        |
| Ethylbenzene          |      |       |       |       |       |       |       |        |
| Xylenes               |      |       |       |       |       |       |       |        |
| Naphthalene           |      |       |       |       |       |       |       |        |
| Benzo(a)anthracene    |      |       |       |       |       |       |       |        |
| Benzo(b)flouranthene  |      |       |       |       |       |       |       |        |
| Benzo(k)flouranthene  |      |       |       | 7 = 1 |       |       |       |        |
| Chrysene              |      | PET   |       |       |       |       |       |        |
|                       |      |       |       |       |       |       |       |        |
| Dibenz(a,h)anthracene |      |       |       |       |       |       |       |        |

# SUMMARY OF ANALYSIS RESULTS (cont'd)



Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

| CoC                       | RBSL<br>(µg/l)   | W-1 | W-2 | W -3       | W -4 |
|---------------------------|------------------|-----|-----|------------|------|
| Free Product<br>Thickness | None             |     |     |            |      |
| Benzene                   | 5                |     |     |            |      |
| Toluene                   | 1,000            |     |     |            |      |
| Ethylbenzene              | 700              |     |     |            |      |
| Xylenes                   | 10,000           |     |     |            |      |
| Total BTEX                | N/A              |     |     |            |      |
| МТВЕ                      | 40               |     |     |            |      |
| Naphthalene               | 25               |     |     |            |      |
| Benzo(a)anthracene        | 10               |     |     |            |      |
| Benzo(b)flouranthene      | 10               |     |     | \ <u>}</u> |      |
| Benzo(k)flouranthene      | 10               |     |     |            |      |
| Chrysene                  | 10               | 3   |     |            |      |
| Dibenz(a,h)anthracen<br>e | 10               |     |     |            |      |
| EDB                       | .05              |     |     |            |      |
| 1,2-DCA                   | .05              |     |     |            |      |
| Lead                      | Site<br>specific |     |     |            |      |

4-

1468 Cardinal



size of tank 5ft
length of hole 10ft 8in
depth " "5ft
width " 8ft 10in
house to center of tank 8ft 3in



# ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)



August 25, 2006

Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn:

JOHN MAHONEY

Work Order:

OPH0362

Project Name:

LAUREL BAY

Project Number: Date Received: EP 2362

08/18/06

| SAMPLE IDENTIFICATION   | LAB NUMBER | COLLECTION DATE AND TIME |
|-------------------------|------------|--------------------------|
| 441-01 BOTTOM           | OPH0362-01 | 08/14/06 10:15           |
| 441-02 SIDE             | OPH0362-02 | 08/14/06 10:15           |
| 143 LBB-01 BOTTOM       | OPH0362-03 | 08/14/06 14:00           |
| 143 LBB-02 SIDE         | OPH0362-04 | 08/14/06 14:00           |
| _ 143 LBB-03 BOTTOM     | OPH0362-05 | 08/14/06 14:30           |
| 143 LBB-04 SIDE         | OPH0362-06 | 08/14/06 14:30           |
| 270 BIRCH-01 BOTTOM     | OPH0362-07 | 08/15/06 08:45           |
| 270 BIRCH-02 SIDE       | OPH0362-08 | 08/15/06 08:50           |
| 201 BALSAM-01 BOTTOM    | OPH0362-09 | 08/15/06 13:40           |
| 201 BALSAM-02 SIDE      | OPH0362-10 | 08/15/06 13:45           |
| 1468 CARDINAL 01 BOTTOM | OPH0362-11 | 08/16/06 09:25           |
| 468 CARDINAL 02 SIDE    | OPH0362-12 | 08/16/06 09:25           |
| 1472 CARDINAL 01 BOTTOM | OPH0362-13 | 08/16/06 13:30           |
| 1472 CARDINAL 02 SIDE   | OPH0362-14 | 08/16/06 14:00           |

Samples were received into laboratory at a temperature of 5.00 °C.

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have recieved this material in error, please notify us immediately.

Results are reported on a wet weight basis unless otherwise noted

The reported results were obtained in compliance with 2003 NELAC standards unless otherwise noted.

South Carolina Certification Number: 96012001

Approved By:

TestAmerica - Orlando, FL

Shali Brown



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY Attn:

Work Order:

OPH0362

Project:

LAUREL BAY

Project Number. EP 2362

08/14/06-08/16/06 Sampled:

Received: 08/18/06

LABORATORY REPORT

# Sample ID: 441-01 BOTTOM - Lab Number: OPH0362-01 - Matrix: Solid/Soil

| CAS#          | Analyté                       | Result        | Q     | Units     | MDL                                     | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method         | Batch   |
|---------------|-------------------------------|---------------|-------|-----------|-----------------------------------------|-------|---------------|-----------------------|-----|----------------|---------|
| General (     | Chemistry Parameters          | ***********   |       |           | 500000000000000000000000000000000000000 |       | 113000        | ***********           |     | de e grecomone |         |
| NA            | % Solids                      | 85.5          |       | %.        | 0,100                                   | 0.100 | 1             | 08/18/06 17:19        | AKA | EPA 160.3      | 6H21005 |
| Volatile C    | Organic Compounds by EPA Me   | ethod 8260B   |       |           |                                         |       |               |                       |     |                |         |
| 71-43-2       | Benzene                       | 43.0          | RL2,U | ug/kg dry | 43.0                                    | 118   | 250           | 08/18/06 17:12        | ЛLS | EPA 8260B      | 6H21019 |
| 100-41-4      | Ethylbenzene                  | 1480          |       | ug/kg dry | 49.7                                    | 118   | 250           | 08/18/06 17:12        | JLS | EPA 8260B      | 6H21019 |
| 91-20-3       | Naphthalene                   | 15600         |       | ug/kg dry | 64.9                                    | 118   | 250           | 08/18/06 17:12        | JLS | EPA 8260B      | 6H21019 |
| 108-88-3      | Toluene                       | 127           |       | ug/kg dry | 102                                     | 118   | 250           | 08/18/06 17:12        | JLS | EPA 8260B      | 6H21019 |
| 1330-20-7     | Xylenes, total                | 4530          |       | ug/kg dry | 61.0                                    | 118   | 250           | 08/18/06 17:12        | JLS | EPA 8260B      | 6H21019 |
| Surrogate: 1. | 2-Dichloroethane-d4 (73-137%) | 99 %          |       |           |                                         |       |               |                       |     |                |         |
| Surrogate: 4- | -Bromofluorobenzene (59-118%) | 103 %         |       |           |                                         |       |               |                       |     |                |         |
| Surrogate: D  | ibromofluoromethane (55-145%) | 102 %         |       |           |                                         |       |               |                       |     |                |         |
| Surrogate: To | oluene-d8 (80-117%)           | 102 %         |       |           |                                         |       |               |                       |     |                |         |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82 | 70    |           |                                         |       |               |                       |     |                |         |
| 83-32-9       | Acenaphthene                  | 86.5          | U     | ug/kg dry | 86.5                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 208-96-8      | Acenaphthylene                | 114           | U     | ug/kg dry | 114                                     | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 120-12-7      | Anthracene                    | 7410          |       | ug/kg dry | 623                                     | 1950  | 10            | 08/25/06 09:17        | LCS | EPA 8270C      | 6H22026 |
| 56-55-3       | Benzo (a) anthracene          | 242           | 1,    | ug/kg dry | 211                                     | 1950  | 10            | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 20.6          | U     | ug/kg dry | 20.6                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 20.6          | U     | ug/kg dry | 20.6                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 20,3          | U     | ug/kg dry | 20.3                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 24.0          | U     | ug/kg dry | 24.0                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 90-12-0       | 1-Methylnaphthalene           | 22700         |       | ug/kg dry | 980                                     | 1950  | 10            | 08/25/06 09:17        | LCS | EPA 8270C      | 6H22026 |
| 218-01-9      | Chrysene                      | 23.4          | U     | ug/kg dry | 23,4                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 53-70-3       | Dibenz (a,h) anthracene       | 25.6          | U     | ug/kg dry | 25,6                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 206-44-0      | Fluoranthene                  | 28.1          | U     | ug/kg dry | 28,1                                    | 195   | t             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 86-73-7       | Fluorene                      | 1350          |       | ug/kg dry | 76.4                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 193-39-5      | Indeno (1,2,3-cd) pyrene      | 25,3          | υ     | ug/kg dry | 25,3                                    | 195   | 1             | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 91-57-6       | 2-Methylnaphthalene           | 34000         |       | ug/kg dry | 833                                     | 1950  | 10            | 08/25/06 09:17        | LCS | EPA 8270C      | 6H22026 |
| 91-20-3       | Naphthalene                   | 5880          |       | ug/kg dry | 784                                     | 1950  | 10            | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| 85-01-8       | Phenanthrene                  | 7320          |       | ug/kg dry | 461                                     | 1950  | 10            | 08/25/06 09:17        | LCS | EPA 8270C      | 6H22026 |
| 129-00-0      | Pyrene                        | 511           | 1     | ug/kg dry | 397                                     | 1950  | 10            | 08/24/06 18:52        | LCS | EPA 8270C      | 6H22026 |
| Surrogate: 2- | Fluorobiphenyl (24-121%)      | 67 %          |       | 2.2-2.    |                                         |       |               |                       |     |                |         |
|               | itrobenzene-d5 (19-111%)      | 93 %          |       |           |                                         |       |               |                       |     |                |         |
| Surrogate: Te | erphenyl-d14 (44-171%)        | 35 %          | 31    |           |                                         |       |               |                       |     |                |         |

#### LABORATORY REPORT

## Sample ID: 441-02 SIDE - Lab Number: OPH0362-02 - Matrix: Solid/Soil

| CAS#      | Analyte                       | Result | Q     | Units     | MDL    | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method    | Batch   |
|-----------|-------------------------------|--------|-------|-----------|--------|-------|---------------|-----------------------|-----|-----------|---------|
| General C | Chemistry Parameters % Solids | 86.2   |       | %.        | 0.100  | 0.100 | 1             | 08/18/06 17:19        | ΛKA | EPA 160.3 | 6H21005 |
|           | rganic Compounds by EPA       |        |       |           | 371350 | 74170 |               | 0.042.55 3010         |     |           |         |
| 71-43-2   | Benzene                       | 47.5   | RL2,U | ug/kg dry | 47.5   | 130   | 250           | 08/18/06 17:29        | JLS | EPA 8260B | 6H21019 |
| 100-41-4  | Ethylbenzene                  | 781    |       | ug/kg dry | 54.9   | 130   | 250           | 08/18/06 17:29        | JLS | EPA 8260B | 6H21019 |

TestAmerica - Orlando, FL

Shali Brown



Client: EPG, INC

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY Attn:

Work Order

Project Number:

Project:

OPH0362

LAUREL BAY EP 2362

Sampled:

08/14/06-08/16/06

08/18/06 Received:

## LABORATORY REPORT

Sample ID: 441-02 SIDE - Lab Number: OPH0362-02 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result          | Q    | Units     | MDL  | PQL  | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method          | Batch                                  |
|---------------|-------------------------------|-----------------|------|-----------|------|------|---------------|-----------------------|-----|-----------------|----------------------------------------|
| Volatile C    | Organic Compounds by EPA M    | ethod 8260B - C | ont. |           | ->   |      | ******        |                       |     | X-X-8-8-904-1-1 | ************************************** |
| 91-20-3       | Naphthalene                   | 10200           |      | ug/kg dry | 71.6 | 130  | 250           | 08/18/06 17:29        | ЛS  | EPA 8260B       | 6H21019                                |
| 108-88-3      | Toluene                       | 117             | 1    | ug/kg dry | 112  | 130  | 250           | 08/18/06 17:29        | ЛLS | EPA 8260B       | 6H21019                                |
| 1330-20-7     | Xylenes, total                | 1480            |      | ug/kg dry | 67.4 | 130  | 250           | 08/18/06 17:29        | ILS | EPA 8260B       | 6H21019                                |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 98 %            |      |           |      |      |               |                       |     |                 |                                        |
| Surrogate: 4- | Bromofluorobenzene (59-118%)  | 108 %           |      |           |      |      |               |                       |     |                 |                                        |
| Surrogate: D  | ibromofluoromethane (55-145%) | 101 %           |      |           |      |      |               |                       |     |                 |                                        |
| Surrogate: To | oluene-d8 (80-117%)           | 103 %           |      |           |      |      |               |                       |     |                 |                                        |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82   | 70   |           |      |      |               |                       |     |                 |                                        |
| 83-32-9       | Acenaphthene                  | 85.8            | u    | ug/kg dry | 85.8 | 194  | 1             | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 208-96-8      | Acenaphthylene                | 113             | U    | ug/kg dry | 113  | 194  | 1             | 08/24/06 19 20        | LCS | EPA 8270C       | 6H22026                                |
| 120-12-7      | Anthracene                    | 12800           |      | ng/kg dry | 618  | 1940 | 10            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 56-55-3       | Benzo (a) anthracene          | 619             |      | ug/kg dry | 21.0 | 194  | 1             | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 205-99-2      | Benzo (b) fluoranthene        | 454             |      | ug/kg dry | 20.4 | 194  | 1             | 08/24/06 19:20        | LCS | EPA 8270C       | 61422026                               |
| 207-08-9      | Benzo (k) fluoranthene        | 463             |      | ug/kg dry | 20.4 | 194  | 1             | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 191-24-2      | Benzo (g,h,i) perylene        | 20.1            | U    | ug/kg dry | 20.1 | 194  | 1             | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 50-32-8       | Benzo (a) pyrene              | 23.8            | U    | ug/kg dry | 23.8 | 194  | 3:            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 90-12-0       | 1-Methylnaphthalene           | 36100           |      | ug/kg dry | 973  | 1940 | 10            | 08/25/06 10:42        | LCS | EPA 8270C       | 6H22026                                |
| 218-01-9      | Chrysene                      | 874             | 1    | ug/kg dry | 232  | 1940 | 10            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 53-70-3       | Dibenz (a,h) anthracene       | 25.4            | U    | ug/kg dry | 25.4 | 194  | 1             | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 206-44-0      | Fluoranthene                  | 27.9            | U    | ng/kg dry | 27.9 | 194  | 1             | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 86-73-7       | Fluorene                      | 75.8            | U    | ug/kg dry | 75.8 | 194  | - 1           | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 193-39-5      | Indeno (1,2,3-cd) pyrene      | 25.1            | U    | ug/kg dry | 25.1 | 194  | 1.            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 91-57-6       | 2-Methylnaphthalene           | 51200           |      | ug/kg dry | 826  | 1940 | 10            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 91-20-3       | Naphthalene                   | 9560            |      | ug/kg dry | 778  | 1940 | 10            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 85-01-8       | Phenanthrene                  | 12700           |      | ug/kg dry | 457  | 1940 | 10            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| 29-00-0       | Pyrene                        | 2010            |      | ug/kg dry | 394  | 1940 | 10            | 08/24/06 19:20        | LCS | EPA 8270C       | 6H22026                                |
| Surrogate: 2- | Fluorobiphenyl (24-121%)      | 80 %            |      | 2.67      |      |      |               |                       |     |                 |                                        |
| Surrogate: Ni | itrobenzene-d5 (19-111%)      | 57 %            |      |           |      |      |               |                       |     |                 |                                        |
| Surropate: Te | erphenyl-d14 (44-171%)        | 90 %            |      |           |      |      |               |                       |     |                 |                                        |

#### LABORATORY REPORT

Sample ID: 143 LBB-01 BOTTOM - Lab Number: OPH0362-03 - Matrix: Solid/Soil

| CAS#         | Analyte                       | Result       | Q | Units     | MDL   | PQL       | Dil<br>Factor | Analyzed Date/Time | Ву  | Method     | Batch   |
|--------------|-------------------------------|--------------|---|-----------|-------|-----------|---------------|--------------------|-----|------------|---------|
| General C    | hemistry Parameters           |              |   | ********* |       | SHAKKALI. | 11144711      | 3111155000077      |     |            |         |
| NA.          | % Solids                      | 82.4         |   | %         | 0,100 | 0.100     | 1             | 08/18/06 17:19     | AKA | EPA 160.3  | 6H21005 |
| Volatile O   | rganic Compounds by EPA M     | 1ethod 8260B |   |           |       |           |               |                    |     |            |         |
| 71-43-2      | Benzene                       | 0.164        | U | ug/kg dry | 0.164 | 0.449     | L             | 08/18/06 13:50     | JLS | EPA \$260B | 6HZ1019 |
| 100-41-4     | Ethylbenzene                  | 2.24         |   | ug/kg dry | 0.190 | 0.449     | T             | 08/18/06 13:50     | JLS | EPA 8260B  | 6H21019 |
| 91-20-3      | Naphthalene                   | 12.2         |   | ug/kg dry | 0.248 | 0.449     | Y             | 08/18/06 13:50     | JLS | EPA 8260B  | 6H21019 |
| 108-88-3     | Toluene                       | 0.388        | U | ug/kg dry | 0.388 | 0.449     | T             | 08/18/06 13:50     | JLS | EPA 8260B  | 6H21019 |
| 1330-20-7    | Xylenes, total                | 0.512        |   | ug/kg dry | 0.233 | 0.449     | 1             | 08/18/06 13:50     | JLS | EPA 8260B  | 6H21019 |
| Surrogate: 1 | 2-Dichloroethane-d4 (73-137%) | 111%         |   |           |       |           |               |                    |     |            |         |

TestAmerica - Orlando, FL

Shali Brown



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order: Project: OPH0362

Project Number: E

LAUREL BAY EP 2362 Sampled: 08

08/14/06-08/16/06

Received: 08/18/06

#### LABORATORY REPORT

Sample ID: 143 LBB-01 BOTTOM - Lab Number: OPH0362-03 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result          | Q    | Units     | MDL      | PQL      | Dil<br>Factor | Analyzed<br>Date/Time | Ву     | Method    | Batch   |
|---------------|-------------------------------|-----------------|------|-----------|----------|----------|---------------|-----------------------|--------|-----------|---------|
|               | Organic Compounds by EPA Mo   | ethod 8260B - C | ont. |           | ******** | ******** | *****         | 1-***-11-***          | 111548 |           |         |
| Surrogate: 4  | -Bromofluorobenzene (59-118%) | 106 %           |      |           |          |          |               |                       |        |           |         |
| Surrogate: D  | ibromofluoromethane (55-145%) | 106 %           |      |           |          |          |               |                       |        |           |         |
| Surrogate: T  | oluene-d8 (80-117%)           | 104 %           |      |           |          |          |               |                       |        |           |         |
|               | ar Aromatic Hydrocarbons by   |                 | 70   |           |          |          |               |                       |        |           |         |
| 83-32-9       | Acenaphthene                  | 89.8            | Ü    | ug/kg dry | 89.8     | 203      | i L           | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 208-96-8      | Acenaphthylene                | 119             | υ    | ug/kg dry | 119      | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 120-12-7      | Anthracene                    | 64.6            | U    | ug/kg dry | 64.6     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 56-55-3       | Benzo (a) anthracene          | 21.9            | u    | ug/kg dry | 21.9     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 21.3            | U    | ug/kg dry | 21.3     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 21.3            | υ    | ug/kg dry | 21.3     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 21.0            | U    | ug/kg dry | 21.0     | 203      | 3             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 24.9            | u    | ug/kg dry | 24.9     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 90-12-0       | I-Methylnaphthalene           | 102             | υ    | ug/kg dry | 102      | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 218-01-9      | Chrysene                      | 24.2            | n    | ug/kg dry | 24.2     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 53-70-3       | Dibenz (a,h) anthracene       | 26.6            | U    | ug/kg dry | 26.6     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 206-44-0      | Fluoranthene                  | 29.2            | Ù    | ug/kg dry | 29.2     | 203      | Y.            | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 86-73-7       | Fluorene                      | 79.3            | U    | ug/kg dry | 79.3     | 203      | 1.            | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 193-39-5      | Indeno (1,2,3-cd) pyrene      | 26.2            | U    | ug/kg dry | 26.2     | 203      | 3:            | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 91-57-6       | 2-Methylnaphthalene           | 86.4            | U    | ug/kg dry | 86.4     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 91-20-3       | Naphthalene                   | 81.4            | U    | ug/kg dry | 81.4     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 85-01-8       | Phenanthrene                  | 47.8            | u    | ug/kg dry | 47.8     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| 129-00-0      | Pyrene                        | 41.2            | U    | ug/kg dry | 41,2     | 203      | 1             | 08/24/06 19:48        | LCS    | EPA 8270C | 6H22026 |
| Surrogate: 2- | Fluorobiphenyl (24-121%)      | 87 %            |      |           |          |          |               |                       |        |           |         |
| Surrogate: N  | itrobenzene-d5 (19-111%)      | 78 %            |      |           |          |          |               |                       |        |           |         |
| Surrogate: Te | erphenyl-d14 (44-171%)        | 94 %            |      |           |          |          |               |                       |        |           |         |

#### LABORATORY REPORT

Sample ID: 143 LBB-02 SIDE - Lab Number: OPH0362-04 - Matrix: Solid/Soil

| CAS#           | Analyte                       | Result      | Q     | Units       | MDL   | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву   | Method      | Batch     |
|----------------|-------------------------------|-------------|-------|-------------|-------|-------|---------------|-----------------------|------|-------------|-----------|
| General C      | hemistry Parameters           |             | ***** | W-11158883L |       |       | ******        |                       |      | *********** | ********* |
| NA             | % Solids                      | 89.8        |       | %.          | 0.100 | 0,100 | 1             | 08/18/06 17:19        | AKA  | EPA 160.3   | 6H21005   |
| Volatile O     | rganic Compounds by EPA Me    | ethod 8260B |       |             |       |       |               |                       |      |             |           |
| 71-43-2        | Benzene                       | 0.178       | U     | ug/kg dry   | 0.178 | 0.487 | 1.1           | 08/18/06 14:10        | ILS. | EPA 8260B   | 6H21019   |
| 100-41-4       | Ethylbenzene                  | 0.206       | U     | ug/kg dry   | 0.206 | 0.487 | I.            | 08/18/06 14:10        | JLS  | EPA 8260B   | 6H21019   |
| 91-20-3        | Naphthalene                   | 0.269       | u     | ug/kg dry   | 0.269 | 0.487 | -10           | 08/18/06 14:10        | ILS- | EPA 8260B   | 6H21019   |
| 108-88-3       | Toluene                       | 0.420       | U     | ug/kg dry   | 0.420 | 0.487 | F             | 08/18/06 14:10        | ILS  | EPA 8260B   | 6H21019   |
| 1330-20-7      | Xylenes, total                | 0,253       | U     | ug/kg dry   | 0.253 | 0.487 | 1             | 08/18/06 14:10        | JLS  | EPA 8260B   | 6H21019   |
| Surrogate: 1,. | 2-Dichloroethane-d4 (73-137%) | 113 %       |       |             |       |       |               |                       |      |             |           |
| Surrogate: 4-  | Bromofluorobenzene (59-118%)  | 104 %       |       |             |       |       |               |                       |      |             |           |
| Surrogate: Di  | (bromofluoromethane (55-145%) | 105 %       |       |             |       |       |               |                       |      |             |           |
|                |                               |             |       |             |       |       |               |                       |      |             |           |

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Surrogate: Toluene-d8 (80-117%)



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order:

OPH0362

Project:

LAUREL BAY

Project Number:

EP 2362

Sampled:

08/14/06-08/16/06

Received: 08/18/06

## LABORATORY REPORT

Sample ID: 143 LBB-02 SIDE - Lab Number: OPH0362-04 - Matrix: Solid/Soil

| CAS#           | Analyte                    | Result          | Q  | Units     | MDL  | PQL  | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method         | Batch                                   |
|----------------|----------------------------|-----------------|----|-----------|------|------|---------------|-----------------------|-----|----------------|-----------------------------------------|
| Polynucle      | ar Aromatic Hydrocarbons b | y EPA Method 82 | 70 |           |      | U.S. | PARTIE        |                       |     | 7117-1-8-8-8-8 | \$5000000000000000000000000000000000000 |
| 83-32-9        | Acenaphthene               | 82.4            | U  | ug/kg dry | 82.4 | 186  | 1             | U8/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 208-96-8       | Acenaphthylene             | 109             | U  | ug/kg dry | 109  | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 120-12-7       | Anthracene                 | 59,3            | u  | ug/kg dry | 59.3 | 186  | 1             | 08/24/06 20;16        | LCS | EPA 8270C      | 6H22026                                 |
| 56-55-3        | Benzo (a) anthracene       | 20.1            | U  | ug/kg dry | 20.1 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 205-99-2       | Benzo (b) fluoranthene     | 19.6            | u  | ug/kg dry | 19.6 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 207-08-9       | Benzo (k) fluoranthene     | 19.6            | U  | ug/kg dry | 19.6 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 61122026                                |
| 191-24-2       | Benzo (g,h,i) perylene     | 19.3            | u  | ug/kg dry | 19.3 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 50-32-8        | Benzo (a) pyrene           | 22.9            | U  | ug/kg dry | 22.9 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 90-12-0        | 1-Methylnaphthalene        | 93.4            | U  | ug/kg dry | 93.4 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 218-01-9       | Chrysene                   | 22.2            | U  | ug/kg dry | 22.2 | 186  | 11:           | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 53-70-3        | Dibenz (a,b) anthracene    | 24.4            | U  | ug/kg dry | 24.4 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 206-44-0       | Fluoranthene               | 26.7            | υ  | ug/kg dry | 26.7 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 86-73-7        | Fluorene                   | 72.8            | U  | ug/kg dry | 72.8 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 193-39-5       | Indeno (1,2,3-cd) pyrene   | 24.1            | U  | ug/kg dry | 24.1 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 91-57-6        | 2-Methylnaphthalene        | 79.3            | U  | ug/kg dry | 79.3 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 91-20-3        | Naphthalene                | 74.7            | u  | ug/kg dry | 74.7 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 85-01-8        | Phenanthrene               | 43.9            | U  | ug/kg dry | 43.9 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| 129-00-0       | Pyrene                     | 37.8            | U  | ug/kg dry | 37.8 | 186  | 1             | 08/24/06 20:16        | LCS | EPA 8270C      | 6H22026                                 |
| Surrogate: 2-1 | Fluorobiphenyl (24-121%)   | 102 %           |    |           |      |      |               |                       |     |                |                                         |
| Surrogate: Ni  | trobenzene-d5 (19-111%)    | 94 %            |    |           |      |      |               |                       |     |                |                                         |
| Surrogate: Te  | rphenyl-d14 (44-171%)      | 114 %           |    |           |      |      |               |                       |     |                |                                         |

## LABORATORY REPORT

Sample ID: 143 LBB-03 BOTTOM - Lab Number: OPH0362-05 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result        | Q     | Units       | MDL           | PQL      | Dil<br>Factor | Analyzed Date/Time | Ву     | Method     | Batch    |
|---------------|-------------------------------|---------------|-------|-------------|---------------|----------|---------------|--------------------|--------|------------|----------|
| General C     | Chemistry Parameters          |               | ***** | 22235000000 | e secretare e | 11111000 | 327777        |                    | 111000 |            |          |
| NA            | % Solids                      | 86.3          |       | %           | 0.100         | 0.100    | 1             | 08/18/06 17:19     | AKA    | EPA 160.3  | 6H21005  |
| Volatile O    | organic Compounds by EPA Me   | thod 8260B    |       |             |               |          |               |                    |        |            |          |
| 71-43-2       | Benzene                       | 0.169         | U     | ug/kg dry   | 0.169         | 0.461    | T.            | 08/18/06 14:30     | ЛS     | EPA 8260B  | 61421019 |
| 100-41-4      | Ethylbenzene                  | 0.195         | U     | ug/kg dry   | 0.195         | 0.461    | 1             | 08/18/06 14:30     | JLS    | EPA 8260B  | 6H21019  |
| 91-20-3       | Naphthalene                   | 0.254         | U     | ug/kg dry   | 0.254         | 0.461    | 1             | 08/18/06 14:30     | ЛS     | EPA 8260B  | 61121019 |
| 108-88-3      | Toluene                       | 0.398         | U     | ug/kg dry   | 0.398         | 0.461    | 1             | 08/18/06 14:30     | JLS    | EPA 8260B  | 6H21019  |
| 1330-20-7     | Xylenes, total                | 0.239         | U     | ug/kg dry   | 0.239         | 0.461    | 1             | 08/18/06 14:30     | JLS    | EPA 8260B  | 6H21019  |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 111%          |       |             |               |          |               |                    |        |            |          |
| Surrogate: 4  | Bromofluorobenzene (59-118%)  | 103 %         |       |             |               |          |               |                    |        |            |          |
| Surrogate: D  | ibromofluoromethane (55-145%) | 104 %         |       |             |               |          |               |                    |        |            |          |
| Surrogate: To | oluene-d8 (80-117%)           | 103 %         |       |             |               |          | -             |                    |        |            |          |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82 | 70    |             |               |          |               |                    |        |            |          |
| 83-32-9       | Acenaphthene                  | 85.7          | U     | ug/kg dry   | 85.7          | 194      | 1             | 08/24/06 20:44     | LCS    | EPA \$270C | 6H22026  |
| 208-96-8      | Acenaphthylene                | 113           | U     | ug/kg dry   | 113           | 194      | 1             | 08/24/06 20:44     | LCS    | EPA 8270C  | 6H22026  |
| 120-12-7      | Anthracene                    | 61.7          | U     | ug/kg dry   | 61.7          | 194      | 1             | 08/24/06 20:44     | LCS    | EPA 8270C  | 6H22026  |
| 56-55-3       | Benzo (a) anthracene          | 21.0          | U     | ug/kg dry   | 21.0          | 194      | 1             | 08/24/06 20:44     | LCS    | EPA 8270C  | 6H22026  |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY Attn:

Work Order:

OPH0362

Project: LAUREL BAY EP 2362 Project Number:

08/14/06-08/16/06 Sampled

Received: 08/18/06

## LABORATORY REPORT

Sample ID: 143 LBB-03 BOTTOM - Lab Number: OPH0362-05 - Matrix: Solid/Soil

| CAS#          | Analyte                    | Result          | Q        | Units     | MDL  | PQL       | Dil<br>Factor | Analyzed<br>Date/Time     | Ву     | Method    | Batch            |
|---------------|----------------------------|-----------------|----------|-----------|------|-----------|---------------|---------------------------|--------|-----------|------------------|
| Polynucle     | ar Aromatic Hydrocarbons b | y EPA Method 82 | 70 - Con | t.        |      | 811158884 | . 11-6-00     | : E = 4 x x x 4 h h m m m | ****** |           | are entered to 1 |
| 205-99-2      | Benzo (b) fluoranthene     | 20.4            | Ü        | ug/kg dry | 20.4 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 207-08-9      | Benzo (k) fluoranthene     | 20.4            | U        | ug/kg dry | 20.4 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 191-24-2      | Benzo (g,h,i) perylene     | 20.1            | U        | ug/kg dry | 20.1 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 50-32-8       | Benzo (a) pyrene           | 23.8            | U        | ug/kg dry | 23.8 | 194       | t             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 90-12-0       | 1-Methylnaphthalene        | 97.1            | U        | ug/kg dry | 97.1 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 218-01-9      | Chrysene                   | 23.2            | U        | ug/kg dry | 23.2 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 53-70-3       | Dibenz (a,h) anthracene    | 25.4            | · O      | ug/kg dry | 25.4 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 206-44-0      | Fluoranthene               | 27.8            | u        | ug/kg dry | 27.8 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 86-73-7       | Fluorene                   | 75.7            | U        | ug/kg dry | 75.7 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 193-39-5      | Indeno (1,2,3-cd) pyrene   | 25.1            | U        | ug/kg dry | 25.1 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 91-57-6       | 2-Methylnaphthalene        | 82.5            | Ü        | ug/kg dry | 82.5 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 91-20-3       | Naphthalene                | 77.7            | U        | ug/kg dry | 77.7 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 85-01-8       | Phenanthrene               | 45.6            | U        | ug/kg dry | 45.6 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| 129-00-0      | Pyrene                     | 39.3            | U        | ug/kg dry | 39.3 | 194       | 1             | 08/24/06 20:44            | LCS    | EPA 8270C | 6H22026          |
| Surrogate: 2- | Fluorobiphenyl (24-121%)   | 91 %            |          | 0.00      |      |           |               |                           |        |           |                  |
| Surrogate: Ni | trobenzene-d5 (19-111%)    | 82 %            |          |           |      |           |               |                           |        |           |                  |
| Surrogate; Te | rphenyl-d14 (44-171%)      | 122 %           |          |           |      |           |               |                           |        |           |                  |

## LABORATORY REPORT

Sample ID: 143 LBB-04 SIDE - Lab Number: OPH0362-06 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result        | Q  | Units     | MDL       | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method     | Batch   |
|---------------|-------------------------------|---------------|----|-----------|-----------|-------|---------------|-----------------------|-----|------------|---------|
| General C     | Chemistry Parameters          |               |    | ********* | ********* |       | (400)000      |                       |     | ********** |         |
| NA            | % Solids                      | 92.6          |    | %.        | 0.100     | 0.100 | 1             | 08/18/06 17:19        | AKA | EPA 160,3  | 6H21005 |
| Volatile C    | Organic Compounds by EPA Me   | thod 8260B    |    |           |           |       |               |                       |     |            |         |
| 71-43-2       | Benzene                       | 0.181         | U  | ug/kg dry | 0.181     | 0,495 | 1             | 08/18/06 14:51        | JLS | EPA 8260B  | 6H21019 |
| 100-41-4      | Ethylbenzene                  | 0.210         | u  | ug/kg dry | 0.210     | 0,495 | 1             | 08/18/06 14:51        | JLS | EPA 8260B  | 6H21019 |
| 91-20-3       | Naphthalene                   | 0.274         | U  | ug/kg dry | 0.274     | 0 495 | 1             | 08/18/06 14:51        | JLS | EPA 8260B  | 6H21019 |
| 108-88-3      | Toluene                       | 0.428         | U  | ug/kg dry | 0.428     | 0.495 | 1             | 08/18/06 14:51        | ЛS  | EPA 8260B  | 6H21019 |
| 1330-20-7     | Xylenes, total                | 0.257         | U  | ug/kg dry | 0.257     | 0.495 | T             | 08/18/06 14:51        | JLS | EPA 8260B  | 6H21019 |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 117 %         |    |           |           |       |               |                       |     |            |         |
| Surrogate: 4- | Bromofluorobenzene (59-118%)  | 104 %         |    |           |           |       |               |                       |     |            |         |
| Surrogale: D  | hbromofluoromethane (55-145%) | 107 %         |    |           |           |       |               |                       |     |            |         |
| Surrogate: To | oluene-d8 (80-117%)           | 103 %         |    |           |           |       |               |                       |     |            |         |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82 | 70 |           |           |       |               |                       |     |            |         |
| 83-32-9       | Acensphthene                  | 79.9          | U  | ug/kg dry | 79.9      | 180   | -1            | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |
| 208-96-8      | Acenaphthylene                | 105           | U  | ug/kg dry | 105       | 180   | 1             | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |
| 120-12-7      | Anthracene                    | 57.5          | D. | ug/kg dry | 57.5      | 180   | 1.            | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |
| 56-55-3       | Benzo (a) anthracene          | 19.5          | U  | ug/kg dry | 19.5      | 180   | 1             | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 19.0          | U  | ug/kg dry | 19.0      | 180   | 1             | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 19.0          | U  | ug/kg dry | 19.0      | 180   | T             | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 18.7          | U  | ug/kg dry | 18.7      | 180   | 1             | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 22.2          | υ  | ug/kg dry | 22.2      | 180   | 1             | 08/24/06 21:12        | LCS | EPA 8270C  | 6H22026 |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order: Project: OPH0362

LAUREL BAY

Project Number: E

EP 2362

Sampled: 08/14/06-08/16/06

Received: 08/18/06

## LABORATORY REPORT

Sample ID; 143 LBB-04 SIDE - Lab Number: OPH0362-06 - Matrix: Solid/Soil

| CAS#          | Analyte                     | Result        | Q        | Units     | MDL  | PQL    | Dil<br>Factor | Analyzed<br>Date/Time | Ву   | Method       | Batch       |
|---------------|-----------------------------|---------------|----------|-----------|------|--------|---------------|-----------------------|------|--------------|-------------|
| Polynucle     | ar Aromatic Hydrocarbons by | EPA Method 82 | 70 - Con | t.        |      | ~***** |               | -0.10********         |      | -11-19-20-11 | 19849 (100) |
| 90-12-0       | 1-Methylnaphthalene         | 90.5          | U        | ug/kg dry | 90.5 | 180    | 1             | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| 218-01-9      | Chrysene                    | 21.6          | U        | ug/kg dry | 21.6 | 180    | 1             | 08/24/06 21-12        | LCS  | EPA 8270C    | 6H22026     |
| 53-70-3       | Dibenz (a,h) anthracene     | 23.7          | U        | ug/kg dry | 23.7 | 180    | 1             | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| 206-44-0      | Fluoranthene                | 25.9          | U        | ug/kg dry | 25.9 | 180    | 1             | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| 86-73-7       | Fluorene                    | 70.6          | O        | ug/kg dry | 70.6 | 180    | 1             | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| 193-39-5      | Indeno (1,2,3-cd) pyrene    | 23.3          | U        | ug/kg dry | 23.3 | 180    | 1             | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| 91-57-6       | 2-Methylnaphthalene         | 76.9          | U        | ug/kg dry | 76.9 | 180    | . 1           | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| 91-20-3       | Naphthalene                 | 72.4          | U        | ug/kg dry | 72.4 | 180    | 1             | 08/24/06 21:12        | 1.CS | EPA 8270C    | 6H22026     |
| 85-01-8       | Phenanthrene                | 42,5          | U        | ug/kg dry | 42.5 | 180    | T.            | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| 129-00-0      | Pyrene                      | 36.6          | U        | ug/kg dry | 36.6 | 180    | 1             | 08/24/06 21:12        | LCS  | EPA 8270C    | 6H22026     |
| Surrogate: 2- | Fluorobiphenyl (24-121%)    | 65 %          |          |           |      |        |               |                       |      |              |             |
| Surrogate: N  | (trobenzene-d5 (19-111%)    | 75 %          |          |           |      |        |               |                       |      |              |             |
| Surrogate: Te | erphenyl-d14 (44-171%)      | 124 %         |          |           |      |        |               |                       |      |              |             |

### LABORATORY REPORT

Sample ID: 270 BIRCH-01 BOTTOM - Lab Number: OPH0362-07 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result        | Q  | Units           | MDL   | PQL       | Dil<br>Factor | Analyzed Date/Time | Ву  | Method       | Batch   |
|---------------|-------------------------------|---------------|----|-----------------|-------|-----------|---------------|--------------------|-----|--------------|---------|
| General C     | hemistry Parameters           | ON2444412244  |    | 400 44 24 50 71 |       | ********* | 600-1411      | 12+++++10++494     |     | 193179000000 |         |
| NA            | % Solids                      | 93.8          |    | %.              | 0.100 | 0.100     | 1.            | 08/18/06 17:19     | AKA | EPA 160.3    | 6H21006 |
| Volatile O    | rganic Compounds by EPA Me    | ethod 8260B   |    |                 |       |           |               |                    |     |              |         |
| 71-43-2       | Benzene                       | 0.206         | U  | ug/kg dry       | 0,206 | 0,562     | - 1           | 08/18/06 15:13     | JLS | EPA 8260B    | 6H21019 |
| 100-41-4      | Ethylbenzene.                 | 0.238         | U  | ug/kg dry       | 0.238 | 0.562     | T             | 08/18/06 15:13     | JLS | EPA 8260B    | 6H21019 |
| 91-20-3       | Naphthalene                   | 0.311         | U  | ug/kg dry       | 0.311 | 0.562     | 1             | 08/18/06 15/13     | JLS | EPA 8260B    | 6H21019 |
| 108-88-3      | Toluene                       | 0.486         | U  | ug/kg dry       | 0.486 | 0.562     | 1             | 08/18/06 15:13     | ЛS  | EPA 8260B    | 6H21019 |
| 1330-20-7     | Xylenes, total                | 0.292         | U  | ug/kg dry       | 0.292 | 0.562     | 1             | 08/18/06 15:13     | ЛS  | EPA 8260B    | 6H21019 |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 112 %         |    |                 |       |           |               |                    |     |              |         |
| Surrogate: 4- | Bromofluorobenzene (59-118%)  | 102 %         |    |                 |       |           |               |                    |     |              |         |
| Surrogate: Di | ibromofluoromethane (55-145%) | 104%          |    |                 |       |           |               |                    |     |              |         |
| Surrogate: To | oluene-d8 (80-117%)           | 103 %         |    |                 |       |           |               |                    |     |              |         |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82 | 70 |                 |       |           |               |                    |     |              |         |
| 83-32-9       | Acenaphthene                  | 78.9          | U  | ug/kg dry       | 78.9  | 178       | a l           | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 208-96-8      | Acenaphthylene                | 104           | U  | ug/kg dry       | 104   | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 120-12-7      | Anthracene                    | 56.8          | U  | ug/kg dry       | 56.8  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 56-55-3       | Benzo (a) anthracene          | 19.3          | U  | ug/kg dry       | 19.3  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 18.7          | U  | ug/kg dry       | 18.7  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 18.7          | U  | ug/kg dry       | 18.7  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 18.5          | U  | ug/kg dry       | 18.5  | 178       | -1            | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 21.9          | U  | ug/kg dry       | 21.9  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 90-12-0       | 1-Methylnaphthalene           | 89.4          | U  | ug/kg dry       | 89 4  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 218-01-9      | Chrysene                      | 21.3          | U  | ug/kg dry       | 21.3  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 53-70-3       | Dibenz (a,h) anthracene       | 23.4          | U  | ug/kg dry       | 23.4  | 178       | -0            | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |
| 206-44-0      | Fluoranthene                  | 25.6          | σ  | ug/kg dry       | 25.6  | 178       | 1             | 08/24/06 21:40     | LCS | EPA 8270C    | 6H22026 |



Client EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order

Project

OPH0362

LAUREL BAY

Project Number: EP 2362

Sampled: 08/14/06-08/16/06

Received 08/18/06

### LABORATORY REPORT

Sample ID: 270 BIRCH-01 BOTTOM - Lab Number: OPH0362-07 - Matrix: Solid/Soil

| CAS#          | Analyte                     | Result          | Q        | Units     | MDL                     | PQL | Dil<br>Factor | Analyzed<br>Date/Time | Ву      | Method    | Batch   |
|---------------|-----------------------------|-----------------|----------|-----------|-------------------------|-----|---------------|-----------------------|---------|-----------|---------|
| Polynucle     | ar Aromatic Hydrocarbons by | y EPA Method 82 | 70 - Con | t.        | 5 5 5 5 5 5 1 1 1 1 1 1 |     | ******        |                       | 01000-5 | *****     |         |
| 86-73-7       | Fluorene                    | 69,7            | υ        | ug/kg dry | 69.7                    | 178 | 1             | 08/24/06 21:40        | LCS     | EPA 8270C | 6H22026 |
| 193-39-5      | Indeno (1,2,3-cd) pyrene    | 23.0            | U        | ug/kg dry | 23.0                    | 178 | 1             | 08/24/06 21:40        | LCS     | EPA 8270C | 6H22026 |
| 91-57-6       | 2-Methylnaphthalene         | 75,9            | -0       | ug/kg dry | 75,9                    | 178 | 1             | 08/24/06 21:40        | LCS     | EPA 8270C | 6H22026 |
| 91-20-3       | Naphthalene                 | 71.5            | U        | ug/kg dry | 71.5                    | 178 | .1            | 08/24/06 21:40        | LCS     | EPA 8270C | 6H22026 |
| 85-01-8       | Phenanthrene                | 42.0            | υ        | ug/kg dry | 42.0                    | 178 | 1             | 08/24/06 21:40        | LCS     | EPA 8270C | 6H22026 |
| 129-00-0      | Pyrene                      | 36.2            | 10       | ug/kg dry | 36.2                    | 178 | 1             | 08/24/06 21:40        | LCS     | EPA 8270C | 6H22026 |
| Surrogate: 2- | Fluorobipheny! (24-121%)    | 93 %            |          |           |                         |     |               |                       |         |           |         |
| Surrogate: N  | itrobenzene-d5 (19-111%)    | 88 %            |          |           |                         |     |               |                       |         |           |         |
| Surrogate: Te | erphenyl-d14 (44-171%)      | 130 %           |          |           |                         |     |               |                       |         |           |         |

## LABORATORY REPORT

Sample ID; 270 BIRCH-02 SIDE - Lab Number; OPH0362-08 - Matrix; Solid/Soil

| CAS#          | Analyte                       | Result        | Q   | Units     | MDL   | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву   | Method    | Batch   |
|---------------|-------------------------------|---------------|-----|-----------|-------|-------|---------------|-----------------------|------|-----------|---------|
| General C     | Chemistry Parameters          |               |     |           |       |       | 2000000       |                       |      | *****     |         |
| NA            | % Solids                      | 95.2          |     | %         | 0.100 | 0.100 | 1             | 08/18/06 17:19        | AKA  | EPA 160,3 | 6H21006 |
| Volatile C    | Organic Compounds by EPA Me   | thod 8260B    |     |           |       |       |               |                       |      |           |         |
| 71-43-2       | Benzene                       | 0.191         | u   | ug/kg dry | 0.191 | 0.522 | 1             | 08/18/06 15:34        | JLS. | EPA 8260B | 6H21019 |
| 100-41-4      | Ethylbenzene                  | 0.221         | U   | ug/kg dry | 0.221 | 0.522 | 1             | 08/18/06 15:34        | ЛLS  | EPA 8260B | 6H21019 |
| 1-20-3        | Naphthalene                   | 0.288         | U   | ug/kg dry | 0.288 | 0.522 | 1             | 08/18/06 15:34        | JLS  | EPA 8260B | 6H21019 |
| 108-88-3      | Toluene                       | 0.451         | U   | ug/kg dry | 0.451 | 0.522 | 1             | 08/18/06 15:34        | JLS  | EPA 8260B | 6H21019 |
| 1330-20-7     | Xylenes, total                | 0.271         | υ   | ug/kg dry | 0 271 | 0.522 | 1             | 08/18/06 15:34        | ЛS   | EPA 8260B | 6H21019 |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 111 %         |     |           |       |       |               |                       |      |           |         |
| Surrogate: 4- | Bromofluorobenzene (59-118%)  | 99 %          | Ti- |           |       |       |               |                       |      |           |         |
| Surrogate: D  | ibromofluoromethane (55-145%) | 106 %         |     |           |       |       |               |                       |      |           |         |
| Surrogate: To | oluene-d8 (80-117%)           | 101 %         |     |           |       |       |               |                       |      |           |         |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82 | 70  |           |       |       |               |                       |      |           |         |
| 33-32-9       | Acenaphthene                  | 77.7          | U   | ug/kg dry | 77.7  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 208-96-8      | Acenaphthylene                | 103           | U   | ug/kg dry | 103   | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 20-12-7       | Anthracene                    | 55.9          | U   | ug/kg dry | 55.9  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 6-55-3        | Benzo (a) anthracene          | 19.0          | U   | ug/kg dry | 19.0  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 18.5          | U   | ug/kg dry | 18.5  | 175   | t             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 18,5          | U   | ug/kg dry | 18.5  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 18,2          | U   | ug/kg dry | 18.2  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 0-32-8        | Benzo (a) pyrene              | 21.6          | U   | ug/kg dry | 21.6  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 90-12-0       | I-Methylnaphthalene           | 88.1          | U   | ug/kg dry | 88.1  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 218-01-9      | Chrysene                      | 21.0          | υ   | ug/kg dry | 21.0  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 53-70-3       | Dibonz (a,h) anthracene       | 23.0          | υ   | ug/kg dry | 23.0  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 06-44-0       | Fluoranthene                  | 25.2          | U   | ug/kg dry | 25.2  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 6-73-7        | Fluorene                      | 68.7          | U   | ug/kg dry | 68.7  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 93-39-5       | Indeno (1,2,3-cd) pyrene      | 22.7          | U   | ug/kg dry | 22.7  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 11-57-6       | 2-Methylnaphthalene           | 74.8          | U   | ug/kg dry | 74.8  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |
| 71-20-3       | Naphthalene                   | 70.4          | υ   | ug/kg dry | 70.4  | 175   | 1             | 08/24/06 22:08        | LCS  | EPA 8270C | 6H22026 |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order: Project OPH0362

LAUREL BAY

Project Number EP 2362

Sampled: 08/14/06-08/16/06

Received 08/18/06

## LABORATORY REPORT

Sample ID: 270 BIRCH-02 SIDE - Lab Number: OPH0362-08 - Matrix: Solid/Soil

| CAS#          | Analyte                     | Result          | Q        | Units     | MDL         | PQL          | Dil<br>Factor | Analyzed<br>Date/Time | Ву      | Method    | Batch   |
|---------------|-----------------------------|-----------------|----------|-----------|-------------|--------------|---------------|-----------------------|---------|-----------|---------|
| Polynucle     | ear Arematic Hydrocarbons b | y EPA Method 82 | 70 - Con | t.        | 150******** | 100 55 50 11 |               | ************          | ******* |           |         |
| 85-01-8       | Phenanthrene                | 41.4            | u        | ug/kg dry | 41.4        | 175          | 1             | 08/24/06 22:08        | LCS     | EPA 8270C | 6H22026 |
| 129-00-0      | Pyrene                      | 35.6            | U        | ug/kg dry | 35.6        | 175          | 1             | 08/24/06 22:08        | LCS     | EPA 8270C | 6H22026 |
| Surrogate: 2- | -Fluorobiphenyl (24-121%)   | 94 %            |          |           |             |              |               |                       |         |           |         |
| Surrogate: N  | titrobenzene-d5 (19-111%)   | 87 %            |          |           |             |              |               |                       |         |           |         |
| Surrogate: Te | erphenyl-d14 (44-171%)      | 123 %           |          |           |             |              |               |                       |         |           |         |

## LABORATORY REPORT

Sample ID: 201 BALSAM-01 BOTTOM - Lab Number: OPH0362-09 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result                  | Q            | Units      | MDL   | PQL      | Dil<br>Factor | Analyzed<br>Date/Time | Ву   | Method     | Batch   |
|---------------|-------------------------------|-------------------------|--------------|------------|-------|----------|---------------|-----------------------|------|------------|---------|
| General C     | Chemistry Parameters          | i gantili gasanti të ve | SCHOOL STATE | ********** |       | ******** | 2225-11       | 10150531415454        |      | ********** |         |
| NA.           | % Solids                      | 85.4                    |              | %          | 0.100 | 0.100    | 1             | 08/18/06 17:19        | AKA  | EPA 160.3  | 6H21006 |
| Volatile O    | Organic Compounds by EPA M    | ethod 8260B             |              |            |       |          |               |                       |      |            |         |
| 71-43-2       | Benzene                       | 44.3                    | RL2,U        | ug/kg dry  | 44.3  | 121      | 250           | 08/18/06 17:47        | JLS  | EPA 8260B  | 6H21019 |
| 100-41-4      | Ethylbenzene                  | 2370                    |              | ug/kg dry  | 51.2  | 121      | 250           | 08/18/06 17:47        | JLS  | EPA 8260B  | 6H21019 |
| 91-20-3       | Naphthalene                   | 16600                   |              | ug/kg dry  | 66.8  | 121      | 250           | 08/18/06 17:47        | ЛS   | EPA 8260B  | 6H21019 |
| 108-88-3      | Toluene                       | 104                     | U            | ug/kg dry  | 104   | 121      | 250           | 08/18/06 17:47        | JLS. | EPA 8260B  | 6H21019 |
| 1330-20-7     | Xylenes, total                | 1810                    |              | ug/kg dry  | 62.8  | 121      | 250           | 08/18/06 17:47        | n.s  | EPA 8260B  | 6H21019 |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 101 %                   |              |            |       |          |               |                       |      |            |         |
| Surrogate: 4- | Bromofluorobenzene (59-118%)  | 107 %                   |              |            |       |          |               |                       |      |            |         |
| Surrogate: D  | ibromofluoromethane (55-145%) | 101%                    |              |            |       |          |               |                       |      |            |         |
| Surrogate: To | oluene-d8 (80-117%)           | 103 %                   |              |            |       |          |               |                       |      |            |         |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82           | 70           |            |       |          |               |                       |      |            |         |
| 33-32-9       | Acenaphthene                  | 2250                    |              | ug/kg dry  | 867   | 1960     | 10            | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 208-96-8      | Acenaphthylene                | 114                     | U            | ug/kg dry  | 114   | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 120-12-7      | Anthracene                    | 11200                   |              | ug/kg dry  | 624   | 1960     | 10            | 08/25/06 12:35        | LCS  | EPA 8270C  | 6H22026 |
| 56-55-3       | Benzo (a) anthracene          | 21.2                    | U            | ug/kg dry  | 21.2  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 20.6                    | U            | ug/kg dry  | 20,6  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 20,6                    | υ            | ug/kg dry  | 20.6  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 20,3                    | U            | ug/kg dry  | 20.3  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 24.1                    | U            | ug/kg dry  | 24.1  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 0-12-0        | 1-Methylnaphthalene           | 21500                   |              | ug/kg dry  | 982   | 1960     | 10            | 08/25/06 12:35        | LCS  | EPA 8270C  | 6H22026 |
| 118-01-9      | Chrysene                      | 464                     | 1            | ug/kg dry  | 234   | 1960     | 10            | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 3-70-3        | Dibenz (a,h) anthracene       | 25.7                    | U            | ug/kg dry  | 25.7  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 06-44-0       | Fluoranthene                  | 706                     | 1            | ug/kg dry  | 281   | 1960     | 10            | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 86-73-7       | Fluorene                      | 2490                    |              | ug/kg dry  | 76.5  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 93-39-5       | Indeno (1,2,3-cd) pyrene      | 25.3                    | U            | ug/kg dry  | 25.3  | 196      | 1             | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 1-57-6        | 2-Methylnaphthalene           | 25500                   |              | ug/kg dry  | 834   | 1960     | 10            | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 1-20-3        | Naphthalene                   | 4220                    |              | ug/kg dry  | 785   | 1960     | 10            | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
| 5-01-8        | Phenanthrene                  | 11100                   |              | ug/kg dry  | 461   | 1960     | 10            | 08/25/06 12:35        | LCS  | EPA 8270C  | 6H22026 |
| 29-00-0       | Pyrene                        | 1530                    | 1            | ug/kg dry  | 397   | 1960     | 10            | 08/24/06 22:36        | LCS  | EPA 8270C  | 6H22026 |
|               | Fluorohiphenyl (24-121%)      | 85 %                    |              |            | 223   |          |               |                       |      |            |         |
|               | itrobenzene-d5 (19-111%)      | 39.96                   |              |            |       |          |               |                       |      |            |         |

Shali Brown



Client: EPG, INC.

CAS#

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order Project: OPH0362

LAUREL BAY

Project Number.

EP 2362

MDL

Sampled: 08/14/06-08/16/06

Received: 08/18/06

## LABORATORY REPORT

Q Units

Sample ID: 201 BALSAM-01 BOTTOM - Lab Number: OPH0362-09 - Matrix: Solid/Soil

Dil Factor

PQL

Analyzed Date/Time

By Method

Batch

Polynuclear Aromatic Hydrocarbons by EPA Method 8270 - Cont.

Surrogate: Terphenyl-d14 (44-171%)

Analyte

83 36

Result

## LABORATORY REPORT

Sample ID: 201 BALSAM-02 SIDE - Lab Number: OPH0362-10 - Matrix: Solid/Soil

| CAS#           | Analyte                       | Result                                 | Q  | Units     | MDL     | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву   | Method    | Batch      |
|----------------|-------------------------------|----------------------------------------|----|-----------|---------|-------|---------------|-----------------------|------|-----------|------------|
|                | Chemistry Parameters          |                                        |    |           | ******* |       |               | 110000000000000       |      |           | a          |
| NA             | % Solids                      | 91.6                                   |    | 9%.       | 0.100   | 0.100 | 1             | 08/18/06 17:19        | AKA  | EPA 160 3 | 6H21006    |
|                | organic Compounds by EPA Me   |                                        |    |           |         | 4.77  |               |                       | 5.0  |           | (Sec. as 2 |
| 71-43-2        | Benzene                       | 0.161                                  | U  | ug/kg dry | 0.161   | 0.440 | 1             | 08/18/06 15:55        | JLS  | EPA 8260B | 6H21019    |
| 100-41-4       | Ethylbenzene                  | 0.186                                  | U  | ug/kg dry | 0.186   | 0,440 | 1             | 08/18/06 15:55        | JLS  | EPA 8260B | 6H21019    |
| 91-20-3        | Naphthalene                   | 0.414                                  | 1  | ug/kg dry | 0,243   | 0.440 | 1             | 08/18/06 15:55        | ЛLS  | EPA 8260B | 6H21019    |
| 108-88-3       | Toluene                       | 0.380                                  | U  | ug/kg dry | 0,380   | 0.440 | 1             | 08/18/06 15:55        | ILS  | EPA 8260B | 6H21019    |
| 330-20-7       | Xylenes, total                | 0.229                                  | n. | ug/kg dry | 0.229   | 0.440 | 1             | 08/18/06 15:55        | ЛS   | EPA 8260H | 6H21019    |
|                | 2-Dichloroethane-d4 (73-137%) | 116 %                                  |    |           |         |       |               |                       |      |           |            |
|                | Bromofluorohenzene (59-118%)  | 98 %                                   |    |           |         |       |               |                       |      |           |            |
| - V. A. L. No. | ibromofluoromethane (55-145%) | 106 %                                  |    |           |         |       |               |                       |      |           |            |
| Surrogate: Te  | oluene-d8 (80-117%)           | 99 %                                   |    |           |         |       |               |                       |      |           |            |
|                | ar Aromatic Hydrocarbons by   | many and a second or an arrange of the |    |           |         |       |               | (20)                  | 25.0 | and stark | and the    |
| 3-32-9         | Acenaphthene                  | 80.8                                   | U  | ug/kg dry | 80.8    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 08-96-8        | Acenaphthylene                | 107                                    | U. | ug/kg dry | 107     | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 20-12-7        | Anthracene                    | 58.1                                   | U  | ug/kg dry | 58.1    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 6-55-3         | Benzo (a) authracene          | 519                                    |    | ug/kg dry | 19.7    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 05-99-2        | Beuzo (b) fluoranthene        | 219                                    |    | ug/kg dry | 19.2    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 07-08-9        | Benzo (k) fluoranthene        | 228                                    |    | ug/kg dry | 19.2    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 91-24-2        | Benzo (g,b,i) perylene        | 833                                    |    | ug/kg dry | 18.9    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 0-32-8         | Benzo (a) pyrene              | 923                                    |    | ug/kg dry | 22.4    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 0-12-0         | 1-Methylnaphthalene           | 91.5                                   | U  | ug/kg dry | 91.5    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 18-01-9        | Chrysene                      | 577                                    |    | ug/kg dry | 21.8    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 3-70-3         | Dibenz (a,h) anthracene       | 23.9                                   | U  | ug/kg dry | 23.9    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 206-44-0       | Fluoranthene                  | 26.2                                   | D  | ug/kg dry | 26.2    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 86-73-7        | Fluorene                      | 71.4                                   | U  | ug/kg dry | 71.4    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 193-39-5       | Indeno (1,2,3-cd) pyrene      | 718                                    |    | ug/kg dry | 23.6    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 1-57-6         | 2-Methylnaphthalene           | 77.7                                   | U  | ug/kg dry | 77.7    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 1-20-3         | Naphthalene                   | 73.2                                   | U  | ug/kg dry | 73.2    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 85-01-8        | Phenanthrene                  | 43.0                                   | U  | ug/kg dry | 43.0    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| 29-00-0        | Pyrene                        | 37.0                                   | U  | ug/kg dry | 37.0    | 182   | 1             | 08/24/06 23:04        | LCS  | EPA 8270C | 6H22026    |
| urrogate: 2-   | Fluorobiphenyl (24-121%)      | 94%                                    |    |           |         |       |               |                       |      |           |            |
| Surrogate: N   | itrobenzene-d5 (19-111%)      | 79 %                                   |    |           |         |       |               |                       |      |           |            |
| Surrogate: Te  | erphenyl-d14 (44-171%)        | 78 %                                   |    |           |         |       |               |                       |      |           |            |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY Attn:

Work Order: Project:

OPH0362

Project Number:

LAUREL BAY EP 2362

08/14/06-08/16/06 Sampled:

Received: 08/18/06

## LABORATORY REPORT

## Sample ID: 1468 CARDINAL 01 BOTTOM - Lab Number: OPH0362-11 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result        | Q         | Units     | MDL     | PQL     | Dil<br>Factor | Analyzed<br>Date/Time | Ву      | Method        | Batch   |
|---------------|-------------------------------|---------------|-----------|-----------|---------|---------|---------------|-----------------------|---------|---------------|---------|
| General (     | Chemistry Parameters          |               | (1)(1900) |           | ******* | ******* | ******        | **************        | 1111688 | 8-111-28-5-20 |         |
| NA            | % Solids                      | 96.6          |           | %.        | 0.100   | 0.100   | 1             | 08/18/06 17:19        | AKA     | EPA 160.3     | 6H21006 |
| Volatile C    | Organic Compounds by EPA M    | ethod 8260B   |           |           |         |         |               |                       |         |               |         |
| 71-43-2       | Benzene                       | 0.221         | U         | ug/kg dry | 0.221   | 0.603   | 1             | 08/18/06 16:16        | ILS     | EPA 8260B     | 6H21019 |
| 100-41-4      | Ethylbenzene                  | 0.458         | 1         | ug/kg dry | 0.255   | 0.603   | 1             | 08/18/06 16:16        | ЛS      | EPA 8260B     | 6H21019 |
| 91-20-3       | Naphthalene                   | 2.23          |           | ug/kg dry | 0.333   | 0,603   | 1             | 08/18/06 16:16        | ЛS      | EPA 8260B     | 6H21019 |
| 108-88-3      | Toluene                       | 2.64          |           | ug/kg dry | 0.521   | 0,603   | 1             | 08/18/06 16:16        | JLS     | EPA 8260B     | 6H21019 |
| 1330-20-7     | Xylenes, total                | 4.25          |           | ug/kg dry | 0.313   | 0.603   | 1             | 08/18/06 16:16        | JLS     | EPA 8260B     | 6H21019 |
| Surrogate: 1  | 2-Dichloroethane-d4 (73-137%) | 116 %         |           |           |         |         |               |                       |         |               |         |
| Surrogate: 4  | -Bromofluorobenzene (59-118%) | 101 %         |           |           |         |         |               |                       |         |               |         |
| Surrogate: L  | hbromofluoromethane (55-145%) | 106 %         |           |           |         |         |               |                       |         |               |         |
| Surrogate: T  | oluene-d8 (80-117%)           | 102 %         |           |           |         |         |               |                       |         |               |         |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82 | 70        |           |         |         |               |                       |         |               |         |
| 83-32-9       | Acenaphthene                  | 76.6          | U         | ug/kg dry | 76.6    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 208-96-8      | Acenaphthylene                | 101           | U         | ug/kg dry | 101     | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 120-12-7      | Anthracene                    | 55.1          | n         | ug/kg dry | 55.1    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 56-55-3       | Benzo (a) authracene          | 547           |           | ug/kg dry | 18.7    | 173     | 4             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 283           |           | ug/kg dry | 18.2    | 173     | 1.            | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 295           |           | ug/kg dry | 18.2    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 17.9          | U         | ug/kg dry | 17.9    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 238           |           | ug/kg dry | 21.3    | 173     | t             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 90-12-0       | 1-Methylnaphthalene           | 86.8          | U         | ug/kg dry | 86,8    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 218-01-9      | Chrysene                      | 769           |           | ug/kg dry | 20,7    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 53-70-3       | Dibenz (a,h) anthracene       | 22.7          | U         | ug/kg dry | 22.7    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 206-44-0      | Fluoranthene                  | 1000          |           | ug/kg dry | 24.9    | 173     | Ť             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 86-73-7       | Fluorene                      | 67.7          | u         | ug/kg dry | 67.7    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 193-39-5      | Indeno (1,2,3-cd) pyrene      | 22.4          | U         | ug/kg dry | 22.4    | 173     | T.            | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 91-57-6       | 2-Methylnaphthalene           | 73.7          | U         | ug/kg dry | 73.7    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 91-20-3       | Naphthalene                   | 69.4          | U         | ug/kg dry | 69.4    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 85-01-8       | Phenanthrene                  | 166           | ī         | ug/kg dry | 40.8    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| 129-00-0      | Pyrene                        | 1310          |           | ug/kg dry | 35.1    | 173     | 1             | 08/24/06 23:32        | LCS     | EPA 8270C     | 6H22026 |
| Surrogate: 2- | Fluorobiphenyl (24-121%)      | 96 %          |           |           |         |         |               |                       |         |               |         |
| Surrogate: N  | itrobenzene-d5 (19-111%)      | 88 %          |           |           |         |         |               |                       |         |               |         |
| Surrogate: To | erphenyl-d14 (44-171%)        | 117 %         |           |           |         |         |               |                       |         |               |         |

## LABORATORY REPORT

## Sample ID: 1468 CARDINAL 02 SIDE - Lab Number: OPH0362-12 - Matrix: Solid/Soil

| CAS#       | Analyte                    | Result       | Q | Umits     | MDL   | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method    | Batch    |
|------------|----------------------------|--------------|---|-----------|-------|-------|---------------|-----------------------|-----|-----------|----------|
| General C  | Chemistry Parameters       | **********   |   |           |       |       |               | 11111000000           |     |           |          |
| NA         | % Solids                   | 72.2         |   | %.        | 0.100 | 0.100 | 1             | 08/18/06 17:19        | AKA | EPA 160.3 | 61121006 |
| Volatile C | Organic Compounds by EPA N | Aethod 8260B |   |           |       |       |               |                       |     |           |          |
| 71-43-2    | Benzene                    | 0,256        | U | ug/kg dry | 0.256 | 0.698 | 1             | 08/18/06 16:37        | JLS | EPA 8260B | 6H21019  |
| 100-41-4   | Ethylbenzene               | 0.489        | j | ug/kg dry | 0.295 | 0.698 | 1             | 08/18/06 16:37        | JLS | EPA 8260B | 6H21019  |

TestAmerica - Orlando, FL

Shali Brown



Client; EPG, INC.

Attn:

PO BOX 1096

MT PLEASANT, SC 29465 JOHN MAHONEY Work Order: Project: OPH0362

LAUREL BAY

Sampled: 08/14/06-08/16/06

Received: 08/18/06

Project Number: EP 2362

## LABORATORY REPORT

Sample ID: 1468 CARDINAL 02 SIDE - Lab Number: OPH0362-12 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result         | Q    | Units     | MDL   | PQL         | Dil<br>Factor | Analyzed Date/Time                      | Ву  | Method    | Batch   |
|---------------|-------------------------------|----------------|------|-----------|-------|-------------|---------------|-----------------------------------------|-----|-----------|---------|
| Volatile C    | Organic Compounds by EPA Me   | thod 8260B - C | ont. | ********* |       | 8 5571 1771 | *****         | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |     |           |         |
| 91-20-3       | Naphthalene                   | 0.386          | U    | ug/kg dry | 0.386 | 0.698       | 1             | 08/18/06 16:37                          | JLS | EPA 8260B | 6H21019 |
| 108-88-3      | Toluene                       | 0.963          |      | ug/kg dry | 0.603 | 0.698       | 1             | 08/18/06 16:37                          | JLS | EPA 8260B | 6H21019 |
| 1330-20-7     | Xylenes, total                | 5.92           |      | ug/kg dry | 0.363 | 0.698       | 1             | 08/18/06 16:37                          | JLS | EPA 8260B | 6H21019 |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 115 %          |      |           |       |             |               |                                         |     |           |         |
| Surrogate: 4- | Bromofluorobenzene (59-118%)  | 81 %           |      |           |       |             |               |                                         |     |           |         |
| Surragate: D  | ibromofluoromethane (55-145%) | 107 %          |      |           |       |             |               |                                         |     |           |         |
| Surrogate: Te | oluene-d8 (80-117%)           | 92 %           |      |           |       |             |               |                                         |     |           |         |
| Polynucle     | ar Aromatic Hydrocarbons by   | EPA Method 82  | 70   |           |       |             |               |                                         |     |           |         |
| 83-32-9       | Acenaphthene                  | 102            | U    | ug/kg dry | 102   | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 208-96-8      | Acenaphthylene                | 135            | U    | ug/kg dry | 135   | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 120-12-7      | Anthracene                    | 73.8           | U    | ug/kg dry | 73.8  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 6-55-3        | Benzo (a) anthracene          | 25.0           | U    | ug/kg dry | 25.0  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 24.3           | U    | ug/kg dry | 24.3  | 231         | 4             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 24,3           | U    | ug/kg dry | 24.3  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 24.0           | U    | ug/kg dry | 24.0  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 28.5           | U    | ug/kg dry | 28.5  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 90-12-0       | 1-Methylnaphthalene           | 116            | U    | ug/kg dry | 116   | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 218-01-9      | Chrysene                      | 27.7           | v    | ug/kg dry | 27.7  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 53-70-3       | Dibenz (a,h) anthracene       | 30.4           | a    | ug/kg dry | 30.4  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 206-44-0      | Fluoranthene                  | 33.3           | U    | ug/kg dry | 33,3  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 86-73-7       | Fluorene                      | 90.5           | U    | ug/kg dry | 90.5  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 193-39-5      | Indeno (1,2,3-cd) pyrene      | 29.9           | U    | ug/kg dry | 29.9  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 1-57-6        | 2-Methylnaphthalene           | 98.6           | U    | ug/kg dry | 98.6  | 231         |               | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 1-20-3        | Naphthalene                   | 92,9           | U ·  | ug/kg dry | 92.9  | 231         | 1.1           | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 5-01-8        | Phenanthrene                  | 54.6           | U    | ug/kg dry | 54.6  | 231         |               | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| 29-00-0       | Pyrene                        | 47.0           | υ    | ug/kg dry | 47.0  | 231         | 1             | 08/25/06 00:00                          | LCS | EPA 8270C | 6H22026 |
| Surrogate: 2- | Fluorobiphenyl (24-121%)      | 97 %           |      |           |       |             |               |                                         |     |           |         |
| Surrogate: Ni | ttrobenzene-d5 (19-111%)      | 86 %           |      |           |       |             |               |                                         |     |           |         |
| Surrogate: Te | erphenyl-d14 (44-171%)        | 127 %          |      |           |       |             |               |                                         |     |           |         |

## LABORATORY REPORT

Sample ID: 1472 CARDINAL 01 BOTTOM - Lab Number: OPH0362-13 - Matrix: Solid/Soil

| CAS#           | Analyte                       | Result           | Q       | Units       | MDL   | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method    | Batch   |
|----------------|-------------------------------|------------------|---------|-------------|-------|-------|---------------|-----------------------|-----|-----------|---------|
| General C      | hemistry Parameters           | ***(************ | 1000000 | 11321111000 |       |       | * 5 5111111   | PACESSE (FAMILIE)     |     |           |         |
| NA             | % Solids                      | 82.0             |         | %.          | 0.100 | 0,100 | 1             | 08/18/06 17:19        | AKA | EPA 160.3 | 6H21006 |
| Volatile O     | rganic Compounds by EPA M     | fethod 8260B     |         |             |       |       |               |                       |     |           |         |
| 71-43-2        | Benzene                       | 45,4             | RL2,U   | ug/kg dry   | 45.4  | 124   | 250           | 08/18/06 18:04        | JLS | EPA 8260B | 6H21019 |
| 100-41-4       | Ethylbenzene                  | 586              |         | ug/kg dry   | 52.5  | 124   | 250-          | 08/18/06 18:04        | JLS | EPA 8260B | 6H21019 |
| 91-20-3        | Naphthalene                   | 5350             |         | ug/kg dry   | 68.6  | 124   | 250           | 08/18/06 18:04        | JLS | EPA 8260B | 6H21019 |
| 108-88-3       | Toluene                       | 107              | u       | ug/kg dry   | 107   | 124   | 250           | 08/18/06 18:04        | JLS | EPA 8260B | 6H21019 |
| 1330-20-7      | Xylenes, total                | 628              |         | ug/kg dry   | 64.5  | 124   | 250           | 08/18/06 18:04        | ЛLS | EPA 8260B | 6H21019 |
| Surrogate: 1,3 | 2-Dichloroethane-d4 (73-137%) | 102 %            |         |             |       |       |               |                       |     |           |         |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY

Work Order: Project:

OPH0362 LAUREL BAY

Project Number:

EP 2362

08/14/06-08/16/06 Sampled:

Received: 08/18/06

## LABORATORY REPORT

Sample ID: 1472 CARDINAL 01 BOTTOM - Lab Number: OPH0362-13 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result          | Q    | Units                | MDL          | PQL      | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method          | Batch   |
|---------------|-------------------------------|-----------------|------|----------------------|--------------|----------|---------------|-----------------------|-----|-----------------|---------|
| Volatile (    | Organic Compounds by EPA Me   | ethod 8260B - C | ont. | 11.1.1.00 6 8 8 4 50 | LL-8-6 × 3-m | 11002001 | 1-5-88-       | 11129070000           |     | \$1411999999111 |         |
| Surrogate: 4  | -Bromofluorobenzene (59-118%) | 107 %           |      |                      |              |          |               |                       |     |                 |         |
| Surrogate: L  | hbromofluoromethane (55-145%) | 101 %           |      |                      |              |          |               |                       |     |                 |         |
| Surrogate: 7  | oluene-d8 (80-117%)           | 103 %           |      |                      |              |          |               |                       |     |                 |         |
| Polynucle     | ear Aromatic Hydrocarbons by  | EPA Method 82   | 70   |                      |              |          |               |                       |     |                 |         |
| 83-32-9       | Acenaphthene                  | 3930            |      | ug/kg dry            | 902          | 2040     | 10            | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 208-96-8      | Acenaphthylene                | 119             | U    | ug/kg dry            | 119          | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 120-12-7      | Anthracene                    | 15500           |      | ug/kg dry            | 649          | 2040     | 10            | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 56-55-3       | Benzo (a) anthracene          | 126             | 1    | ug/kg dry            | 22.0         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 205-99-2      | Benzo (b) fluoranthene        | 21.4            | Ü    | ug/kg dry            | 21.4         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 207-08-9      | Benzo (k) fluoranthene        | 21.4            | U    | ug/kg dry            | 21.4         | 204      | L             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 191-24-2      | Benzo (g,h,i) perylene        | 21.1            | U    | ug/kg dry            | 21.1         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 50-32-8       | Benzo (a) pyrene              | 25.1            | U    | ug/kg dry            | 25.1         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 90-12-0       | 1-Methylnaphthalene           | 102             | U    | ug/kg dry            | 102          | 204      | 1             | 08/25/06 00 28        | LCS | EPA 8270C       | 6H22026 |
| 218-01-9      | Chrysene                      | 24.4            | υ    | ug/kg dry            | 24.4         | 204      | 3.            | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 53-70-3       | Dibenz (a,h) anthracene       | 26.7            | U    | ug/kg dry            | 26.7         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 206-44-0      | Fluoranthene                  | 29.3            | U    | ug/kg dry            | 29,3         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 86-73-7       | Fluorene                      | 79.7            | U    | ug/kg dry            | 79,7         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 193-39-5      | Indeno (1,2,3-ed) pyrene      | 26.4            | U    | ug/kg dry            | 26.4         | 204      | 1             | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 91-57-6       | 2-Methylnaphthalene           | 60400           |      | ug/kg dry            | 868          | 2040     | 10            | 08/25/06 13:31        | LCS | EPA 8270C       | 6H22026 |
| 91-20-3       | Naphthalene                   | 14600           |      | ug/kg dry            | 818          | 2040     | 10            | 08/25/06 13:31        | LCS | EPA 8270C       | 6H22026 |
| 85-01-8       | Phenanthrene                  | 15300           |      | ug/kg dry            | 480          | 2040     | 10            | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| 129-00-0      | Pyrene                        | 41.4            | U    | ug/kg dry            | 41.4         | 204      | · V           | 08/25/06 00:28        | LCS | EPA 8270C       | 6H22026 |
| Surrogate: 2  | Fluorobiphenyl (24-121%)      | 32 %            |      |                      |              |          |               |                       |     |                 |         |
| Surrogate: N  | (urobenzene-d5 (19-111%)      |                 | Ji,U |                      |              |          |               |                       |     |                 |         |
| Surrogate: To | erphenyl-d14 (44-171%)        | 65 %            |      |                      |              |          |               |                       |     |                 |         |

## LABORATORY REPORT

Sample ID: 1472 CARDINAL 02 SIDE - Lab Number: OPH0362-14 - Matrix: Solid/Soil

| CAS#          | Analyte                       | Result     | Q  | Units     | MDL      | PQL    | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method    | Batch   |
|---------------|-------------------------------|------------|----|-----------|----------|--------|---------------|-----------------------|-----|-----------|---------|
| General C     | hemistry Parameters           |            |    | ********* | ******** | 557755 | 66000000      |                       |     |           |         |
| NA.           | % Solids                      | 80.1       |    | %         | 0.100    | 0.100  | 1             | 08/18/06 17:19        | AKA | EPA 160 3 | 6H21006 |
| Volatile O    | rganic Compounds by EPA Me    | thod 8260B |    |           |          |        |               |                       |     |           |         |
| 71-43-2       | Benzene                       | 0.184      | U  | ug/kg dry | 0.184    | 0.502  | T             | 08/18/06 16:54        | JLS | EPA 8260B | 6H21019 |
| 100-41-4      | Ethylbenzene                  | 0,462      | 1. | ug/kg dry | 0.212    | 0.502  | 1             | 08/18/06 16:54        | JLS | EPA 8260B | 6H21019 |
| 91-20-3       | Naphthalene                   | 0.277      | U  | ug/kg dry | 0.277    | 0.502  | T             | 08/18/06 16:54        | JLS | EPA 8260B | 6H21019 |
| 108-88-3      | Toluene                       | 0.452      | 1  | ug/kg dry | 0.433    | 0.502  | 1             | 08/18/06 16:54        | JLS | EPA 8260B | 6H21019 |
| 1330-20-7     | Xylenes, total                | 1.21       |    | ug/kg dry | 0.261    | 0.502  | 1             | 08/18/06 16:54        | JLS | EPA 8260B | 6H21019 |
| Surrogate: 1, | 2-Dichloroethane-d4 (73-137%) | 114 %      |    |           |          |        |               |                       |     |           |         |
| Surrogate: 4- | Bromofluorobenzene (59-118%)  | 106%       |    |           |          |        |               |                       |     |           |         |
| Surrogate: Di | bromofluoromethane (55-145%)  | 105 %      |    |           |          |        |               |                       |     |           |         |
| Surrogate: To | luene-d8 (80-117%)            | 103 %      |    |           |          |        |               |                       |     |           |         |

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

TestAmerica - Orlando, FL

Shali Brown



Client EPG, INC.

Attn:

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY

Work Order

OPH0362

Project:

LAUREL BAY

Project Number:

EP 2362

Sampled:

08/14/06-08/16/06

Received: 08/18/06

## LABORATORY REPORT

Sample ID; 1472 CARDINAL 02 SIDE - Lab Number: OPH0362-14 - Matrix: Solid/Soil

| CAS#          | Analyte                     | Result        | Q   | Units     | MDL  | PQL    | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method                 | Batch     |
|---------------|-----------------------------|---------------|-----|-----------|------|--------|---------------|-----------------------|-----|------------------------|-----------|
| Polynucle     | ear Aromatic Hydrocarbons b | EPA Method 82 | 70  |           |      | ****** | action re     | (47772255-XXX         |     | -0.5 1 X 1 5 - 5 - 0 1 | 111000000 |
| 83-32-9       | Acenaphthene                | 92.4          | T)  | ug/kg dry | 92.4 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 208-96-8      | Acenaphthylene              | 122           | U   | ug/kg dry | 122  | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 20-12-7       | Anthracene                  | 66,5          | 10  | ug/kg dry | 66.5 | 208    | 4             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 56-55-3       | Benzo (a) anthracene        | 22.6          | U   | ug/kg dry | 22.6 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 205-99-2      | Benzo (b) fluoranthene      | 21.9          | U   | ug/kg dry | 21.9 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 207-08-9      | Benzo (k) fluoranthene      | 21.9          | U   | ug/kg dry | 21.9 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 191-24-2      | Benzo (g,h,i) perylene      | 21.6          | U   | ug/kg dry | 21.6 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 60-32-8       | Benzo (a) pyrene            | 25.7          | U   | ug/kg dry | 25.7 | 208    | 1:            | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 00-12-0       | 1-Methylnaphthalene         | 1050          | U   | ug/kg dry | 1050 | 2080   | 10            | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 218-01-9      | Chrysene                    | 24.9          | 90  | ug/kg dry | 24.9 | 208    | T             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 53-70-3       | Dibenz (a,h) anthracene     | 27.4          | O   | ug/kg dry | 27,4 | 208    | 4             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 206-44-0      | Fluoranthene                | 30.0          | U   | ug/kg dry | 30.0 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 6-73-7        | Fluorene                    | R1.6          | υ   | ug/kg dry | 81.6 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 93-39-5       | Indeno (1,2,3-cd) pyrene    | 27.0          | U   | ug/kg dry | 27.0 | 208    | 1             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 1-57-6        | 2-Methylnaphthalene         | 889           | U   | ug/kg dry | 889  | 2080   | 10            | 08/25/06 00:56        | LCS | EPA 8270C              | 61122026  |
| 11-20-3       | Naphthalene                 | 837           | U   | ug/kg dry | 837  | 2080   | 10            | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 35-01-8       | Phenanthrene                | 49.2          | U   | ug/kg dry | 49.2 | 208    | 6             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| 29-00-0       | Pyrene                      | 42.4          | U   | ug/kg dry | 42.4 | 208    | T             | 08/25/06 00:56        | LCS | EPA 8270C              | 6H22026   |
| Surrogate: 2- | -Fluorobiphenyl (24-121%)   | 27 %          |     |           |      |        |               |                       |     |                        |           |
| Surrogate: N  | itrobenzene-d5 (19-111%)    | 46 %          |     |           |      |        |               |                       |     |                        |           |
| urrogate: To  | erphenyl-d14 (44-171%)      | 16 %          | 31. |           |      |        |               |                       |     |                        |           |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order: OPH0362

LAUREL BAY

Project Number: LAUREI
Project Number: EP 2362

Sampled: 08/14/06-08/16/06

Received 08/18/06

## SAMPLE EXTRACTION DATA

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lab Number | Wt/Vol<br>Extracted | Extracted Vol | Date       | Analyst | Method      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------|------------|---------|-------------|
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-01 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-02 | 30.0 g              | 1.0 ml.       | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-03 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-04 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-05 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-06 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-07 | 30,0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-08 | 30.0 g              | I.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-09 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-10 | 30.0 g              | I.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-11 | 30,0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-12 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-13 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| Polynuclear Aromatic Hydrocarbons by EPA Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPH0362-14 | 30.0 g              | 1.0 mL        | 08/22/2006 | YGM     | EPA 3545 MS |
| The second secon |            |                     |               |            |         |             |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY Attn:

Work Order

OPH0362

LAUREL BAY

Project: EP 2362 Project Number:

Sampled: 08/14/06-08/16/06

Received: 08/18/06

## PROJECT QUALITY CONTROL DATA Blank

| Analyte                          | Blank Value      | Q    | Units     | Q.C. Batch | Lab Number   |
|----------------------------------|------------------|------|-----------|------------|--------------|
| General Chemistry Parameters     |                  |      |           |            |              |
| % Solids                         | 0.100            | U    | %.        | 6H21005    | 6H21005-BLK1 |
| % Solids                         | 0,100            | U    | %.        | 6H21006    | 6H21006-BLK1 |
| Volatile Organic Compounds by El | PA Method 8260B  |      |           |            |              |
| Велиене                          | 0.183            | U    | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| Benzene                          | 0.183            | U    | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| Ethylbenzene                     | 0.212            | U    | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| Ethylbenzene                     | 0.212            | U    | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| Naphthalene                      | 0.276            | U    | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| Naphthalene                      | 0.276            | U    | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| Coluene                          | 0.432            | U    | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| Toluene                          | 0.432            | U    | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| Kylenes, total                   | 0.260            | U.   | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| Xylenes, total                   | 0.260            | U    | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| Surrogate: 1,2-Dichloroethane-d4 | 48.6             |      | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| Surrogate: 1,2-Dichloroethane-d4 | 50.1             |      | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| urrogate: 4-Bromofluorobenzene   | 50,6             |      | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| urrogate: 4-Bromofluorobenzene   | 50.0             |      | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| urrogate: Dibromofluoromethane   | 50.9             |      | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| urrogate: Dibromofluoromethane   | 51.0             |      | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| urrogate: Toluene-d8             | 51.0             |      | ug/kg wet | 6H21019    | 6H21019-BLK2 |
| furrogate: Toluene-d8            | 51.2             |      | ug/kg wet | 6H21019    | 6H21019-BLK1 |
| Polynuclear Aromatic Hydrocarbo  | ns by EPA Method | 8270 |           |            |              |
| Acenaphthene                     | 74.0             | u "  | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Acenaphthylene                   | 97.7             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Anthracene                       | 53.2             | U    | ug/kg'wet | 6H22026    | 6H22026-BLK1 |
| Benzo (a) anthracene             | 18.1             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Benzo (b) fluoranthene           | 17.6             | u    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Benzo (k) fluoranthene           | 17.6             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Benzo (g,h,i) perylene           | 17.3             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Benzo (a) pyrene                 | 20.6             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| l-Methylnaphthalene              | 83.8             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Chrysene                         | 20,0             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Dibenz (a,h) anthracene          | 21.9             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Fluoranthene                     | 24.0             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Pluorene                         | 65.4             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| ndeno (1,2,3-cd) pyrene          | 21,6             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| 2-Methylnaphthalene              | 71.2             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Naphthalene                      | 67.1             | U    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Phenanthrene                     | 39.4             | Ü    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Pyrene                           | 33.9             | 0    | ug/kg wet | 6H22026    | 6H22026-BLK1 |
| Surrogate: 2-Fluorobiphenyl      | 2870             |      | ug/kg wet | 6H22026    | 6H22026-BLK1 |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn:

JOHN MAHONEY

Work Order: Project: OPH0362

Project Number:

LAUREL BAY EP 2362 Sampled: 08/14/06-08/16/06

Received: 08/18/06

## PROJECT QUALITY CONTROL DATA

Blank - Cont.

Blank Value Q.C. Batch Analyte Q Units Lab Number Polynuclear Aromatic Hydrocarbons by EPA Method 8270 Surrogate: Nitrobenzene-d5 6H22026 6H22026-BLK1 2500 ug/kg wet Surrogate: Terphenyl-d14 3990 ug/kg wet 6H22026 6H22026-BLK1

## PROJECT QUALITY CONTROL DATA

## Duplicate

| Analyte                          | Orig. Val.       | Duplicate | Q  | Units     | RPD | RPD Limit | Q,C, Batch | Sample<br>Duplicated |
|----------------------------------|------------------|-----------|----|-----------|-----|-----------|------------|----------------------|
| General Chemistry Parameters     |                  |           |    |           |     |           |            |                      |
| % Solids                         | 93.8             | 94.0      |    | %.        | 0.2 | 15.9      | 6H21006    | ОРИ0362-07           |
| % Solids                         | 90.1             | 90.4      |    | %.        | 0.3 | 15.9      | 6H21005    | OPH0361-01           |
| Volatile Organic Compounds by I  | EPA Method 8260F | t ·       |    |           |     |           |            |                      |
| Benzene                          | < 0.320          | 0.320     | U  | ug/kg dry |     | 30        | 6H21019    | OPH0363-02           |
| Ethylbenzene                     | <0.370           | 0,370     | IJ | ug/kg dry |     | 30        | 6H21019    | OPH0363-02           |
| Naphthalene                      | < 0.483          | 0.483     | U  | ug/kg dry |     | 30        | 6H21019    | OPH0363-02           |
| Toluenc                          | < 0.755          | 0.755     | U  | ug/kg dry |     | 30        | 6H21019    | OPH0363-02           |
| Xylenes, total                   | < 0.454          | 0.454     | D  | ug/kg dry |     | 30        | 6H21019    | OPH0363-02           |
| Surrogate: 1,2-Dichloroethane-d4 |                  | 58.3      |    | ug/kg dry |     |           | 6H21019    | OPH0363-02           |
| Surrogate: 4-Bromofluorobenzene  |                  | 50.6      |    | ug/kg dry |     |           | 6H21019    | OPH0363-02           |
| Surrogate: Dibromofluoromethane  |                  | 52.6      |    | ug/kg dry |     |           | 6H21019    | OPH0363-02           |
| Surrogate: Toluene-d8            |                  | 51.1      |    | ug/kg dry |     |           | 6H21019    | OPH0363-02           |
|                                  |                  |           |    |           |     |           |            |                      |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order: Project: OPH0362

Project Number.

LAUREL BAY EP 2362 Sampled

08/14/06-08/16/06

Received 08/18/06

## PROJECT QUALITY CONTROL DATA

LCS

| Analyte                          | Known Val.        | Analyzed Val                                                     | Q Units   | % Rec. | Target Range | Q.C. Bate |
|----------------------------------|-------------------|------------------------------------------------------------------|-----------|--------|--------------|-----------|
| General Chemistry Parameters     |                   | (3-3-10-4-3-3-10-4-4-3-3-10-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- |           |        |              |           |
| 6 Solids                         | 380               | 382                                                              | */a.      | 101    | 90 - 110     | 6H21006   |
| 6 Solids                         | 380               | 382                                                              | %,        | 101    | 90 - 110     | 6H21005   |
| olatile Organic Compounds by EPA |                   | 13.5                                                             | 77.74     | 1.     | 20 100       |           |
| enzene                           | 50.0              | 48.4                                                             | ug/kg wet | 97     | 84 - 113     | 61121019  |
| enzene                           | 50.0              | 47.0                                                             | ug/kg wet | 94     | 84 - 113     | 6H21019   |
| thylbenzene                      | 50.0              | 47.2                                                             | ug/kg wet | 94     | 85 - 124     | 6H21019   |
| thylbenzene                      | 50.0              | 45.0                                                             | ug/kg wet | 90     | 85 - 124     | 6H21019   |
| aphthalene                       | 50.0              | 55.1                                                             | ug/kg wet | 110    | 90 - 137     | 6H21019   |
| aphthalene                       | 50.0              | 53.8                                                             | ug/kg wet | 108    | 90 - 137     | 6H21019   |
| oluene                           | 50.0              | 48.8                                                             | ug/kg wet | 98     | 82 - 112     | 6H2101    |
| oluene                           | 50.0              | 49.0                                                             | ug/kg wet | 98     | 82 - 112     | 6H2101    |
| ylenes, total                    | 150               | 137                                                              | ug/kg wet | 91     | 84 - 127     | 6H2101    |
| ylenes, total                    | 150               | 144                                                              | ug/kg wet | 96     | 84 - 127     | 6H2101    |
| urrogate: 1,2-Dichloroethane-d4  | 50.0              | 51.7                                                             | ug/kg wet | 103    | 73 - 137     | 6H2101    |
| urrogate: 1,2-Dichloroethane-d4  | 50.0              | 50.2                                                             | ug/kg wet | 100    | 73 - 137     | 6H2101    |
| urrogaie: 4-Bromofluorobenzene   | 50.0              | 50.7                                                             | ug/kg wet | 101    | 59 - 118     | 6H2101    |
| urrogate: 4-Bromofluorobenzene   | 50.0              | 51.2                                                             | ug/kg wet | 102    | 59 - 118     | 6H2101    |
| urrogate: Dibromofluoromethane   | 50.0              | 51.1                                                             | ug/kg wet | 102    | 55 - 145     | 6H2101    |
| urrogate: Dibromofluoromethane   | 50.0              | 51.4                                                             | ug/kg wet | 103    | 55 - 145     | 6H2101    |
| urrogate: Toluene-d8             | 50.0              | 52.0                                                             | ug/kg wet | 104    | 80 - 117     | 6H2101    |
| urrogate: Toluene-d8             | 50.0              | 51.3                                                             | ug/kg wet | 103    | 80 - 117     | 6H2101    |
| olynuclear Aromatic Hydrocarbons | by EPA Method 827 | 0                                                                |           |        |              |           |
| cenaphthene                      | 3330              | 2880                                                             | ug/kg wet | 86     | 51 - 124     | 6H2202    |
| cenaphthylene                    | 3330              | 3430                                                             | ug/kg wet | 103    | 58 - 124     | 6H2202    |
| nthracene                        | 3330              | 3190                                                             | ug/kg wet | 96     | 61 - 122     | 6H2202    |
| enzo (a) anthracene              | 3330              | 2940                                                             | ug/kg wet | 88     | 51 - 139     | 6H2202    |
| cnzo (b) fluoranthene            | 3330              | 2610                                                             | ug/kg wet | 78     | 57 - 129     | 6H2202    |
| enzo (k) fluoranthene            | 3330              | 2860                                                             | ug/kg wet | 86     | 53 - 127     | 6H2202    |
| enzo (g,h,i) perylene            | 3330              | 3560                                                             | ug/kg wet | 107    | 34 - 123     | 6H2202    |
| enzo (a) pyrene                  | 3330              | 2840                                                             | ug/kg wet | .85    | 65 - 109     | 6H2202    |
| -Methylnaphthalene               | 3330              | 2700                                                             | ug/kg wet | 81     | 18 - 115     | 6H2202    |
| hrysene                          | 3330              | 2960                                                             | ug/kg wet | 89     | 55 - 130     | 6112202   |
| ibenz (a,h) anthracene           | 3330              | 3630                                                             | ug/kg wet | 109    | 48 - 125     | 6H2202    |
| iuoranthene                      | 3330              | 2810                                                             | ug/kg wet | 84     | 58 - 129     | 6H2202    |
| uorene                           | 3330              | 3360                                                             | ug/kg wet | 101    | 61 - 128     | 6H2202    |
| deno (1,2,3-cd) pyrene           | 3330              | 3740                                                             | ug/kg wet | 112    | 44 - 126     | 6H2202    |
| Methylnaphthalene                | 3330              | 2940                                                             | ug/kg wet | 88     | 20 - 125     | 6H2202    |
| aphthalene                       | 3330              | 2690                                                             | ug/kg wet | 81     | 23-118       | 6H2202    |
| henanthrene                      | 3330              | 3140                                                             | ug/kg wet | 94     | 61 - 120     | 6H2202    |



Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order:

OPH0362

LAUREL BAY

Project: Project Number:

EP 2362

Sampled: 08/14/06-08/16/06

Received: 08/18/06

## PROJECT QUALITY CONTROL DATA

LCS - Cont.

| Analyte                       | Known Val              | Analyzed Val | Q | Units     | % Rec. | Target Range | Q.C. Batch |
|-------------------------------|------------------------|--------------|---|-----------|--------|--------------|------------|
| Polynuclear Aromatic Hydrocar | bons by EPA Method 827 | 70           |   |           |        |              |            |
| Pyrene                        | 3330                   | 3550         |   | ug/kg wet | 107    | 45 - 141     | 6H22026    |
| Surrogate: 2-Fluorobiphenyl   | 3330                   | 3450         |   | ug/kg wet | 104    | 24 - 121     | 6H22026    |
| Surrogate: Nitrobenzene-d5    | 3330                   | 2870         |   | ug/kg wet | 86     | 19 - 111     | 6H22026    |
| Surrogate: Terphenyl-d14      | 3330                   | 3760         |   | ug/kg wet | 113    | 44 - 171     | 6H22026    |
|                               |                        |              |   |           |        |              |            |



Client EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY

Work Order: Project

OPH0362

LAUREL BAY EP 2362 Project Number:

Sampled: 08/14/06-08/16/06

Received: 08/18/06

## PROJECT QUALITY CONTROL DATA Matrix Spike

| Алаlyte                          | Orig, Val.      | MS Val   | Q Units   | Spike Conc | % Rec. | Target Range | Batch   | Sample<br>Spiked |
|----------------------------------|-----------------|----------|-----------|------------|--------|--------------|---------|------------------|
| Volatile Organic Compounds by    | EPA Method 826  | 0В       |           |            |        |              |         |                  |
| Benzene                          | < 0.183         | 15.0     | ug/kg dry | 50.0       | 30     | 18 - 126     | 6H21019 | OPH0363-0        |
| Benzene                          | < 0.183         | 46.0     | ug/kg dry | 50.0       | 92     | 18 - 126     | 6H21019 | OPH0354-0        |
| Ethylbenzene                     | <0.212          | 8.45     | ug/kg dry | 50.0       | 17     | 12 - 120     | 6H21019 | OPH0363-0        |
| Ethylbenzene                     | < 0.212         | 44.7     | ug/kg dry | 50.0       | 89     | 12 - 120     | 6H21019 | OPH0354-0        |
| Naphthalene                      | < 0.276         | 6.17     | ug/kg dry | 50.0       | 12     | 10 - 125     | 6H21019 | OPH0363-0        |
| Naphthalene                      | < 0.276         | 37.8     | ug/kg dry | 50,0       | 76     | 10 - 125     | 6H21019 | OPH0354-0        |
| Toluene                          | <0.432          | 12.3     | ug/kg dry | 50.0       | 25     | 10 - 130     | 6H21019 | OPH0363-0        |
| Toluene                          | 0.257           | 46.7     | ug/kg dry | 50.0       | 93     | 10 - 130     | 6H21019 | OPH0354-0        |
| Kylenes, total                   | <0.260          | 24.4     | ug/kg dry | 150        | 16     | 10 - 126     | 6H21019 | OPH0363-0        |
| Xylenes, total                   | < 0.260         | 134      | ug/kg dry | 150        | 89     | 10 - 126     | 6H21019 | OPH0354-0        |
| Surrogate: 1,2-Dichloroethane-d4 |                 | 51.0     | ag/kg dry | 50.0       | 102    | 73 - 137     | 6H21019 | OPH0354-0        |
| Surrogate: 1,2-Dichloroethane-d4 |                 | 62,5     | ug/kg dry | 50.0       | 125    | 73 - 137     | 6H21019 | OPH0363-0        |
| Surrogate: 4-Bromofluorobenzene  |                 | 49.3     | ug/kg dry | 50.0       | 99     | 59-118       | 6H21019 | OPH0354-0        |
| Surrogate: 4-Bromofluorobenzene  |                 | 51.2     | ug/kg dry | 50.0       | 102    | 59 - 118     | 6H21019 | OPH0363-0        |
| urrogate: Dibromofluoromethane   |                 | 51.4     | ug/kg dry | 50.0       | 103    | 55 - 145     | 6H21019 | OPH0354-0        |
| urrogate: Dibromofluoromethane   |                 | 54.2     | ug/kg dry | 50,0       | 108    | 55 - 145     | 6H21019 | OPH0363-0        |
| urrogate: Toluene-d8             |                 | 52.0     | ug/kg dry | 50.0       | 104    | 80 - 117     | 6H21019 | OPH0363-0        |
| urrogate: Toluene-d8             |                 | 51.2     | ug/kg dry | 50,0       | 102    | 80 - 117     | 6H21019 | OPH0354-0        |
| olynuclear Aromatic Hydrocart    | ons by EPA Meth | nod 8270 |           |            |        |              |         |                  |
| cenaphthene                      | <76.6           | 2170     | ug/kg dry | 3450       | 63     | 40 - 125     | 6H22026 | OPH0362-1        |
| Acenaphthylene                   | <101            | 2440     | ug/kg dry | 3450       | 71     | 44 - 125     | 6H22026 | OPH0362-1        |
| anthracene                       | <55.1           | 2340     | ug/kg dry | 3450       | 68     | 53 - 121     | 6H22026 | OPH0362-1        |
| senzo (a) anthracene             | 547             | 2400     | ug/kg dry | 3450       | 54     | 46 - 135     | 6H22026 | OPH0362-1        |
| Senzo (b) fluoranthene           | 283             | 2060     | ug/kg dry | 3450       | 52     | 44 - 136     | 6H22026 | OPH0362-1        |
| tenzo (k) fluoranthene           | 295             | 2050     | ug/kg dry | 3450       | 51     | 43 - 131     | 6H22026 | OPH0362-1        |
| lenzo (g,h,i) perylene           | <17.9           | 2810     | ug/kg dry | 3450       | 81     | 34 - 123     | 6H22026 | OPH0362-1        |
| enzo (a) pyrene                  | 238             | 2120     | ug/kg dry | 3450       | 55     | 51 - 115     | 6H22026 | OPH0362-1        |
| -Methylnaphthalene               | <86.8           | 2040     | ug/kg dry | 3450       | 59     | 11-112       | 6H22026 | OPH0362-1        |
| Chrysene                         | 769             | 2440     | ug/kg dry | 3450       | 48     | 48 - 126     | 6H22026 | OPH0362-1        |
| Dibenz (a,h) anthracens          | <22.7           | 2740     | ug/kg dry | 3450       | 79     | 38 - 119     | 6H22026 | OPH0362-1        |
| luoranthene                      | 1000            | 2540     | ug/kg dry | 3450       | 45     | 33 - 138     | 6H22026 | OPH0362-1        |
| luorene                          | <67.7           | 2340     | ng/kg dry | 3450       | 68     | 48 - 128     | 6H22026 | OPH0362-1        |
| ndeno (1,2,3-cd) pyrene          | <22.4           | 2900     | ug/kg dry | 3450       | 84     | 37 - 117     | 6H22026 | OPH0362-         |
| -Methylnaphthalene               | <73.7           | 2220     | ug/kg dry | 3450       | 64     | 11 - 122     | 6H22026 | OPH0362-1        |
| laphthalene                      | <69.4           | 2040     | ug/kg dry | 3450       | 59     | 15 - 116     | 6H22026 | OPH0362-1        |
| henanthrene                      | 166             | 2380     | ug/kg dry | 3450       | 64     | 52 - 123     | 6H22026 | OPH0362-         |
| yrene                            | 1310            | 3150     | ug/kg dry | 3450       | 53     | 31 - 155     | 6H22026 | OPH0362-         |
| urrogate: 2-Fluorobiphenyl       |                 | 2630     | ug/kg dry | 3450       | 76     | 24 - 121     | 6H22026 | OPH0362-         |
| Surrogate: Nitrobenzene-d5       |                 | 2120     | ug/kg dry | 3450       | 61     | 19-111       | 6H22026 | OPH0362-1        |

# Test America ANALYTICAL TESTING CORPORATION

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-556-0886

Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order: Project: OPH0362

LAUREL BAY

Project Number

EP 2362

Sampled.

08/14/06-08/16/06

Received: 08/18/06

## PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

| Analyte                      | Orig. Val.        | MS Val   | Q | Units     | Spike Conc | % Rec | Target Range | Batch   | Sample<br>Spiked |
|------------------------------|-------------------|----------|---|-----------|------------|-------|--------------|---------|------------------|
| Polynuclear Aromatic Hydroca | arbons by EPA Met | hod 8270 |   |           |            |       |              |         |                  |
| Surrogate: Terphenyl-d14     |                   | 2960     | , | ug/kg dry | 3450       | 86    | 44 - 171     | 6H22026 | OPH0362-11       |

## PROJECT QUALITY CONTROL DATA Matrix Spike Dup

| Analyte                          | Orig. Val.    | Duplicate   | Q | Units     | Spike Conc | % Rec. | RPD | RPD<br>Limit | Q.C. Batch | Sample<br>Duplicated |
|----------------------------------|---------------|-------------|---|-----------|------------|--------|-----|--------------|------------|----------------------|
| Volatile Organic Compounds by    | EPA Method    | 8260B       |   |           |            |        |     |              |            |                      |
| Benzene                          | < 0.183       | 35.4        |   | ug/kg dry | 50.0       | 71     | 26  | 30           | 6H21019    | OPH0354-01           |
| Ethylbenzene                     | < 0.212       | 33.7        |   | ug/kg dry | 50.0       | 67     | 28  | 30           | 6H21019    | OPH0354-01           |
| Naphthalene                      | <0.276        | 29.5        |   | ug/kg dry | 50,0       | 59     | 25  | 30           | 6H21019    | OPH0354-01           |
| Toluene                          | 0.279         | 36.0        |   | ug/kg dry | 50.0       | 71     | 26  | 30           | 6H21019    | OPH0354-01           |
| Xylenes, total                   | <0.260        | 103         |   | ug/kg dry | 150        | 69     | 26  | 30           | 6H21019    | OPH0354-01           |
| Surrogate: 1,2-Dichloroethane-d4 |               | 50.7        |   | ug/kg dry | 50.0       | 101    |     |              | 6H2 i 019  | OPH0354-01           |
| Surrogate: 4-Bromofluorobenzene  |               | 49.5        |   | ug/kg dry | 50,0       | 99     |     |              | 6H21019    | OPH0354-01           |
| Surrogate: Dibromofluoromethane  |               | 50.8        |   | ug/kg dry | 50.0       | 102    |     |              | 6H21019    | OPH0354-01           |
| Surrogate: Toluene-d8            |               | 50.8        |   | ug/kg dry | 50.0       | 102    |     |              | 6H21019    | OPH0354-01           |
| Polynuclear Aromatic Hydrocarl   | bons by EPA N | 1ethod 8270 |   |           |            |        |     |              |            |                      |
| Acenaphthene                     | <76.6         | 2830        |   | ug/kg dry | 3450       | 82     | 26  | 60           | 6H22026    | OPH0362-11           |
| Acenaphthylene                   | <101          | 3270        |   | ug/kg dry | 3450       | 95     | 29  | 51           | 6H22026    | OPH0362-11           |
| Anthracene                       | <55.1         | 3100        |   | ug/kg dry | 3450       | 90     | 28  | 60           | 6H22026    | OPH0362-11           |
| Benzo (a) anthracene             | 547           | 3160        |   | ug/kg dry | 3450       | 76     | 27  | 46           | 6H22026    | OPH0362-11           |
| Benzo (b) fluoranthene           | 283           | 2690        |   | ug/kg dry | 3450       | 70     | 27  | 60           | 6H22026    | OPH0362-11           |
| Benzo (k) fluoranthene           | 295           | 2660        |   | ug/kg dry | 3450       | 69     | 26  | 60           | 6H22026    | OPH0362-11           |
| Benzo (g,h,i) perylene           | <17.9         | 3780        |   | ug/kg dry | 3450       | 110    | 29  | 38           | 6H22026    | OPH0362-11           |
| Benzo (a) pyrene                 | 238           | 2740        |   | ug/kg dry | 3450       | 73     | 26  | 48           | 6H22026    | OPH0362-11           |
| 1-Methylnaphthalene              | <86.8         | 2580        |   | ug/kg dry | 3450       | 75     | 23  | 60 .         | 6H22026    | OPH0362-11           |
| Chrysene                         | 769           | 3230        |   | ug/kg dry | 3450       | 71     | 28  | 36           | 6H22026    | OPH0362-11           |
| Dibenz (a,h) anthracene          | <22.7         | 3700        |   | ug/kg dry | 3450       | 107    | 30  | 60           | 6H22026    | OPH0362-11           |
| Fluoranthene                     | 1000          | 3370        |   | ug/kg dry | 3450       | 69     | 28  | 63           | 6H22026    | OPH0362-11           |
| Fluorene                         | <67.7         | 3260        |   | og/kg dry | 3450       | 94     | 33  | 49           | 6H22026    | OPH0362-11           |
| Indena (1,2,3-cd) pyrene         | <22,4         | 3840        |   | ug/kg dry | 3450       | 311    | 28  | 60           | 6H22026    | OPH0362-11           |
| 2-Methylnaphthalene              | <73.7         | 2810        |   | ug/kg dry | 3450       | 81     | 23  | 71           | 6H22026    | OPH0362-11           |
| Naphthalene                      | <69.4         | 2570        |   | ug/kg dry | 3450       | 74     | 23  | 81           | 6H22026    | OPH0362-11           |
| Phenanthrene                     | 166           | 3250        |   | ug/kg dry | 3450       | 89     | 31  | 60           | 6H22026    | OPH0362-11           |
| Pyrene                           | 1310          | 4130        |   | ug/kg dry | 3450       | 82     | 27  | 90           | 6H22026    | OPH0362-11           |
| Surrogate: 2-Fluorobiphenyl      |               | 3300        |   | ug/kg dry | 3450       | 96     |     |              | 6H22026    | OPH0362-11           |
| Surrogate: Nitrobenzene-d5       |               | 2570        |   | ug/kg dry | 3450       | 74     |     |              | 6H22026    | OPH0362-11           |
| Surrogate: Terphenyl-d14         |               | 3710        |   | ug/kg dry | 3450       | 108    |     |              | 6H22026    | OPH0362-11           |



Client: EPG, INC.

Attn:

PO BOX 1096

MT PLEASANT, SC 29465 JOHN MAHONEY Work Order: Project:

Project Number

OPH0362

EP 2362

LAUREL BAY

Sampled:

08/14/06-08/16/06

Received: 08/18/06

## CERTIFICATION SUMMARY

### TestAmerica - Orlando, FL

| Method    | Matrix     | Nelac | South Carolina |
|-----------|------------|-------|----------------|
| EPA 160.3 | Solid/Soil |       |                |
| EPA 8260B | Solid/Soil | X     | X              |
| EPA 8270C | Solid/Soil | x     | X              |

### DATA QUALIFIERS AND DEFINITIONS

Analyte detected at a level less than the reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).

Concentrations in this range are estimated.

J1 Surrogate recovery limits have been exceeded.

RL2 Reporting limit raised due to high concentrations of hydrocarbons.

U The compound was analyzed for but not detected

### ADDITIONAL COMMENTS

When insufficient sample volume is received for Matrix Spike and Matrix Spike Duplicate, Laboratory Control Spike and Laboratory Control Spike Duplicate data is used for batch QC.

Results are reported on a wet weight basis unless otherwise noted,



4310 East Anderson Road \* Orlando, FL 32812 \* 407-851-2560 \* Fax: 407-856-0886 \* 800-851-

| Client: EPG, INC.                                                                                           | Project: OPH0362                      |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Shipped By: Fed Ex                                                                                          | Tracking Number: 858282354468         |
| Cooler Received On: 08/18/06 09:20                                                                          | And Opened On (Date/time): \$/18 1030 |
| Received By: Jessica Batura                                                                                 | Logged in by: Jessica Batura          |
| Were custody seals on the outside of cooler? YE                                                             | S NO/_ If Yes # Location              |
| Were custody seals intact? YES NO                                                                           | N/A / (no seals present)              |
| Chain of Custody Complete? YES/_ NO                                                                         | If No Discrepancy                     |
| Cooler Temparture When Opened: 5.00 De Temparture Blank Included: YES NO Packing Material: Bubblewrap NONE. | <u></u>                               |
|                                                                                                             | Total # Of Containers: 20 # Vials 4 à |
| Any Bottles Broken? YES NO/_ If                                                                             |                                       |
| Any Missing Samples? YES NO If                                                                              | Yes Which One(s)?                     |
| pH Levels: H2SO4 <=2?HNO3 <=2?                                                                              | HCL <=2? NaOH >=10?                   |
| # Of Containers Unpreserved between 6 and 8?                                                                | 48 14 nethanol                        |
| Any Air Bubbles in VOA Vials? YES NO _                                                                      |                                       |
| Was there enough sample shipped in each conta                                                               | iner? YES NO                          |
| Correct Preservatives Used? YES/_ NO                                                                        | If No, please explain:                |
| Project Manager: Shali Brown                                                                                |                                       |
| Corrective Actions Taken 1468 1760                                                                          | 1+1 02 side - 1 jar had no sample     |
| date of                                                                                                     | time,                                 |
| 1473 CARD                                                                                                   | ival as bottom - 1 jar had no sample  |
| 1.700                                                                                                       |                                       |

6840362 page 10t2

Test/America

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?

Compliance Monitoring

| Client Name                                                                           | E            | 19           |                         |                |                                                                                                    |      |        | _     | CI    | ient:    | #:    | 2               | 411    |          |            |          |          | ,       |       |         | 1 7           |        | r.       |                     |                                   |      |
|---------------------------------------------------------------------------------------|--------------|--------------|-------------------------|----------------|----------------------------------------------------------------------------------------------------|------|--------|-------|-------|----------|-------|-----------------|--------|----------|------------|----------|----------|---------|-------|---------|---------------|--------|----------|---------------------|-----------------------------------|------|
| Address:                                                                              |              |              |                         |                |                                                                                                    |      |        |       |       |          |       | _               |        | _        |            | Project  | Name:    |         | AUU   | RE1     | -             | DA     | ×_       |                     |                                   | -    |
| City/State/Zip Code:                                                                  |              | ,            | 11                      | _              |                                                                                                    |      |        |       |       |          |       |                 |        |          |            | Pr       | oject#:  | FY      | 2     | 36.     | 2_            |        |          |                     |                                   | _    |
| Project Manager:                                                                      | (10)         | n /          | 12                      | ha             | nE)                                                                                                | /_   |        | _     |       |          | _     | _               |        |          | S          | ite/Loca | tion ID: |         |       |         |               |        | State    |                     |                                   | _    |
| Telephone Number:                                                                     | /            |              |                         |                |                                                                                                    |      | F      | ax: _ |       |          |       |                 |        |          | 0          | Rep      | port To: |         |       |         |               |        |          |                     |                                   |      |
| Sampler Name: (Print Name)                                                            | AL           | MA           | 14                      | W              | ,                                                                                                  |      |        |       |       |          |       |                 |        |          | 9          | Invo     | oice To: |         |       |         |               |        |          |                     |                                   |      |
| Sampler Signature:                                                                    | All          | 0            | _                       |                | >                                                                                                  | _    | $\leq$ |       |       |          | _     |                 |        | Q        | C          | C        | Quote #: |         |       |         |               | PO#    |          |                     |                                   | _    |
|                                                                                       |              |              |                         |                | Matrix                                                                                             | Pres | serval | ion 8 | # of  | Con      | taine | ers             |        |          |            |          | Analy    | ze For: |       | ,       |               | ,      | _        | 1                   | blos                              | 7    |
| TAT  Standard  Rush (surcharges may apply)  Date Needed:  Fax Results: Y N  SAMPLE ID | Date Sampled | Time Sampled | G = Grab, C = Composite | Field Filtered | SL - Sludge DW - Drinking Water<br>GW - Groundwater S - Sol/Solid<br>WW - Wastewater Specify Other | 3    | Ę.     | МаОн  | 4,504 | Wethanol | None  | Omer ( Specify) | Era, " | The Till | 1579- HILL |          |          |         |       |         |               |        |          | Nor<br>Lev<br>(Bate | rel 2<br>ch QC)<br>rel 3<br>rel 4 |      |
| 441-01 Bottom                                                                         | -            | 1015         |                         | 1              | 905                                                                                                |      | *      | -     | *     | *        | 1     | 1               | 1      | 1        |            |          |          |         |       |         |               |        |          | - #24-W0-5255       |                                   | bi   |
| 441-02 side                                                                           | 8-14         | 1015         |                         | 1              |                                                                                                    |      |        |       | 1     |          |       | 1               |        | 1        | 7          |          |          |         | -     |         |               | 6.5    |          |                     |                                   | 02   |
|                                                                                       | -            | 1400         |                         |                |                                                                                                    |      |        | П     |       |          |       | 1               |        | 1        |            |          |          |         |       |         |               |        |          |                     |                                   | 03   |
| 1431BB -02 SIDE                                                                       | 8-14         | 1400         |                         |                |                                                                                                    |      |        | D     | 1     |          |       | T               | 1      | 1        |            |          |          | J.      |       |         | 1.00          |        |          |                     |                                   | 04   |
| 1431BB-03 Bottom                                                                      | 8-14         | 1430         |                         |                | T. A.                                                                                              |      | Ç,     |       |       |          |       | T               |        |          |            |          |          |         | 10.00 |         |               |        |          |                     |                                   | 05   |
| 143183-04 SIDE                                                                        | 8-14         | 1430         |                         |                |                                                                                                    |      | 12.0   | II    |       |          |       | T               | 91     |          | TE.        |          |          |         |       |         |               |        |          |                     |                                   | 06   |
| 270 BIRCH - OI BOTTOM                                                                 | 8-15         | 8:45         |                         |                |                                                                                                    |      |        |       |       |          |       | I               | II     |          |            |          |          |         |       |         |               |        |          |                     |                                   | 57   |
|                                                                                       |              | 8:50         |                         |                |                                                                                                    |      |        |       |       |          |       |                 |        |          | / 1        |          |          |         |       |         |               |        | .0       |                     |                                   | 68   |
| 20/ BAISAM-01 Boilom                                                                  |              | 1340         |                         | -              |                                                                                                    |      |        |       |       |          |       | 1               |        |          |            | -        |          |         |       |         |               |        |          |                     |                                   | 09   |
| 201BAISAM-02 SIDE<br>Special Instructions:                                            | 8-15         | 1345         |                         |                | 111                                                                                                |      |        |       |       |          |       |                 |        | 1        | 500        |          | 1        | À       | 10    |         |               |        |          |                     |                                   | 10   |
| Lepe<br>1 III                                                                         | ort          | in leto      |                         | _              | 15.                                                                                                | 10   |        | 1     | 16    | 7        | 7     | 7               | /      |          | 2/         | -/-      | 1-1      |         |       | nit Lab | Temp:<br>Temp | 1      | rs:<br>O |                     |                                   |      |
| Relinquished By: //. / Concu                                                          | 4,           | Bale! 7      | ,                       | Viria.         | -                                                                                                  | 1960 | ei     | By.   | W     | 4        | W.    | 4               | 0      |          | Bare       |          | THE:     |         | Custo | ody Sea | als: Y        | N      |          | N/A                 |                                   |      |
| Relinquistica By u la f                                                               | 1            | Date:        | 7                       | Tinhe          | 730                                                                                                | Rec  | elved  | Ву:   | 1     | 4        | 1/2/  | 11              | low    |          | Date       | 1/18     | Time?    | 10      |       |         |               |        |          | 468_                | n                                 | 1    |
| Relinquished By:                                                                      |              | Date:        |                         | Time           | 9:                                                                                                 | Red  | eviec  | д Ву  | : '   | 1        |       |                 |        |          | Date:      |          | Time:    |         | Meth  | od of S | hipmer        | nt: Fe | dtx      | 1011                | 7-Ol                              | and; |

# Test/America

DPHODUL Page 2012

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?

Compliance Monitoring

| 14004.                                             | RATED        | 00               |           |                |                                                          |                  |       |       |       |          |       |                 |      | 1 1    |        |                |        |         | 00,14   |        |         |         | -      |        |                                               |      |
|----------------------------------------------------|--------------|------------------|-----------|----------------|----------------------------------------------------------|------------------|-------|-------|-------|----------|-------|-----------------|------|--------|--------|----------------|--------|---------|---------|--------|---------|---------|--------|--------|-----------------------------------------------|------|
| Client Name                                        | E            | PG               | _         |                |                                                          |                  |       | _     | CI    | ient     | #:_   | 2               | 4    | 11     | _      |                |        |         | ,       |        | 1       | -       |        |        |                                               |      |
| Address:                                           |              |                  |           |                |                                                          |                  |       |       |       |          | _     |                 |      |        |        | Pi             | roject | Name:   | LA      | RE     | 1       | 50      | 1      |        |                                               | _    |
| City/State/Zip Code:                               |              | ,,,              |           |                |                                                          |                  |       | _     |       |          |       |                 |      |        |        |                | Pro    | oject#: | El      | 72     | 36      | 2       |        |        |                                               |      |
| Project Manager:                                   | 16           | (Rho             | nE,       | V              |                                                          |                  |       |       |       |          |       |                 |      |        |        | Site           | Locat  | ion ID: |         |        |         |         |        | State  | ):                                            |      |
| Telephone Number:                                  |              |                  |           |                |                                                          |                  | Fa    | x:_   |       |          |       |                 |      |        |        |                | Rep    | ort To: |         |        |         |         |        |        |                                               |      |
| Sampler Name: (Print Name)                         | AL           | M                | An        | 40             | 2                                                        |                  |       |       |       |          |       |                 |      |        |        |                | Invo   | ice To: |         |        |         |         |        |        |                                               |      |
| Sampler Signature:                                 |              |                  |           |                |                                                          |                  | _     |       |       |          |       |                 |      | 1      |        |                | Q      | uote#:  |         |        |         |         | PO#    | :      |                                               |      |
|                                                    | ,,,          | -                | _         |                | Matrix                                                   | Pres             | ervat | ion 8 | # of  | Cor      | ntain | ers             |      | 1      | V      | 0              |        | Analy:  | ze For. |        |         |         |        |        | 1                                             | -    |
| Standard Rush (surcharges may apply)  Data Needed: |              |                  | Composite |                | - Drinking Water<br>or S - Soil/Solid<br>r Specify Other |                  |       |       |       |          |       |                 | /    | tellan | 1      | XXX            |        |         | /       |        |         | //      | //     | 1      | QC Deliverate None Level 2 (Batch QC) Level 3 |      |
| Fax Results: Ý N<br>SAMPLE ID                      | Date Sampled | Time Sampled     | ti i      | Field Filtered | SL - Studge DW -<br>GW - Grountwater<br>WW - Wastewater  | HNO <sub>3</sub> | HCI   | NaOH  | H2SO. | Methanol | None  | Other (Specify) | K.Y. | A'     | 7      | <i>†</i> /     |        |         |         |        |         |         |        |        | Level 4 Other:                                | -    |
| 1468 CARdINAL O 1 BOTTON                           | 8-16         | 9.25             |           |                |                                                          |                  |       | I     |       |          |       |                 | -1   |        |        |                |        |         |         |        |         | 7       | 100    |        |                                               | 1)   |
| 1468 CARDINAL OZSIDE                               | 8-16         | 9:25             |           |                |                                                          |                  |       |       |       |          |       |                 |      |        |        | all.           |        |         |         |        |         |         |        |        |                                               | 12   |
| 1472 CARDINAL OI BOTTOM                            | 8-16         | 1330             |           |                |                                                          |                  |       |       |       |          |       |                 |      |        |        |                |        |         |         |        |         |         |        |        |                                               | 13   |
| 1472 CARDINAL OZ SIDE                              | 8-16         | 1400             |           |                |                                                          |                  |       |       | +     | 1        |       |                 | 1    | 1      | +      |                |        |         |         |        |         |         |        |        |                                               | = HE |
|                                                    |              |                  |           |                |                                                          |                  |       | -     |       | 1        | -     |                 |      |        |        |                |        |         |         |        |         |         |        |        |                                               |      |
|                                                    |              |                  |           |                |                                                          |                  |       |       |       | 1        |       |                 |      |        | +      |                |        |         |         |        |         |         |        |        |                                               |      |
| Special Instructions:                              |              | <del>- ~ /</del> |           |                |                                                          |                  |       | - 7   |       |          |       |                 |      | 1      |        | . /            |        |         |         | 1      | nit Lab | Temp    | MMEN   |        | )                                             |      |
| Relinquished By: Allanu                            | as           | Date             | 7         | Time           | 215                                                      | Reco             | Iveg  | 60    | 20    | u        | A     | *               | L    | 1      | 6      | 9//7<br>aje:/7 | 2      | The.    | 15      | 100    |         | als: Y  |        |        | Address of the second                         |      |
| Rollingulared by well of                           | 1            | Bate:            | 7         |                | 7-21                                                     | Rece             |       |       |       | 1        | f     | 7               | M    | ello   | $\neg$ | ate 8/         | 7      | Time:   |         | Bottle | s Sup   | plied b | y Test | Americ | ca: Y N                                       | D.   |
| Relinquished By:                                   |              | Date:            |           | Time           | e:                                                       | Rea              | eive  | Ву    | . 6   | /        | 1     |                 |      |        | D      | ate:           |        | Time:   |         | Metho  | d of S  | hipme   | nt:    |        | - V-4-                                        |      |

## Appendix C Laboratory Analytical Report - Groundwater





Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## **ANALYTICAL RESULTS**

Project:

**LAUREL BAY 7/30/08** 

Pace Project No.: 9224584

| Sample: 1472 CARDINAL A                                                                                                                                                                                                                                                                                      | Lab ID: 9224584                                                                                                                                                                                                                                                                                                                         | <b>4010</b> Collected: 07/3                                                                                                 | 0/08 16:00                                        | Received: 08                                                                                                                                                                                                                                                                                                                                                                                             | 3/01/08 07:55 N                                                                                                                                                                                                                                                            | Natrix: Water                                                                                                                                                                                   |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Parameters                                                                                                                                                                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                                                                 | Units Report Limi                                                                                                           | DF                                                | Prepared                                                                                                                                                                                                                                                                                                                                                                                                 | Analyzed                                                                                                                                                                                                                                                                   | CAS No.                                                                                                                                                                                         | Qual   |
| 3270 MSSV PAH by SIM SPE                                                                                                                                                                                                                                                                                     | Analytical Method:                                                                                                                                                                                                                                                                                                                      | EPA 8270 by SIM Prepa                                                                                                       | ation Metl                                        | nod: EPA 3535                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |        |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                       | ND ug/L                                                                                                                                                                                                                                                                                                                                 | 4.                                                                                                                          | 20                                                | 08/05/08 00:00                                                                                                                                                                                                                                                                                                                                                                                           | 08/13/08 18:17                                                                                                                                                                                                                                                             | 193-39-5                                                                                                                                                                                        |        |
| 1-Methylnaphthalene                                                                                                                                                                                                                                                                                          | 1810 ug/L                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                          | 100                                               | 08/05/08 00:00                                                                                                                                                                                                                                                                                                                                                                                           | 08/13/08 18:38                                                                                                                                                                                                                                                             | 90-12-0                                                                                                                                                                                         |        |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                          | 2790 ug/L                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                          | 100                                               | 08/05/08 00:00                                                                                                                                                                                                                                                                                                                                                                                           | 08/13/08 18:38                                                                                                                                                                                                                                                             | 91-57-6                                                                                                                                                                                         |        |
| Naphthalene                                                                                                                                                                                                                                                                                                  | <b>821</b> ug/L                                                                                                                                                                                                                                                                                                                         | 30.                                                                                                                         | 20                                                | 08/05/08 00:00                                                                                                                                                                                                                                                                                                                                                                                           | 08/13/08 18:17                                                                                                                                                                                                                                                             | 91-20-3                                                                                                                                                                                         | D3     |
| Phenanthrene                                                                                                                                                                                                                                                                                                 | <b>534</b> ug/L                                                                                                                                                                                                                                                                                                                         | 4.                                                                                                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/13/08 18:17                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| Pyrene                                                                                                                                                                                                                                                                                                       | 32.7 ug/L                                                                                                                                                                                                                                                                                                                               | 2.                                                                                                                          |                                                   | 08/05/08 00:00                                                                                                                                                                                                                                                                                                                                                                                           | 08/13/08 18:17                                                                                                                                                                                                                                                             | 129-00-0                                                                                                                                                                                        |        |
| Nitrobenzene-d5 (S)                                                                                                                                                                                                                                                                                          | 73 %                                                                                                                                                                                                                                                                                                                                    | 50-15                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/13/08 18:17                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| 2-Fluorobiphenyl (S)                                                                                                                                                                                                                                                                                         | 62 %                                                                                                                                                                                                                                                                                                                                    | 50-15                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/13/08 18:17                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| Ferphenyl-d14 (S)                                                                                                                                                                                                                                                                                            | 90 %                                                                                                                                                                                                                                                                                                                                    | 50-15                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/13/08 18:17                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| 3260 MSV Low Level                                                                                                                                                                                                                                                                                           | Analytical Method:                                                                                                                                                                                                                                                                                                                      | EPA 8260                                                                                                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |        |
| Benzene                                                                                                                                                                                                                                                                                                      | <b>10.4</b> ug/L                                                                                                                                                                                                                                                                                                                        | 1.                                                                                                                          | 0 1                                               |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             | 71-43-2                                                                                                                                                                                         |        |
| Ethylbenzene                                                                                                                                                                                                                                                                                                 | 114 ug/L                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                          | ) 1                                               |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             | 100-41-4                                                                                                                                                                                        |        |
| Naphthalene                                                                                                                                                                                                                                                                                                  | 1030 ug/L                                                                                                                                                                                                                                                                                                                               | 10.                                                                                                                         | 10                                                |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/07/08 22:35                                                                                                                                                                                                                                                             | 91-20-3                                                                                                                                                                                         |        |
| Toluene                                                                                                                                                                                                                                                                                                      | 3.7 ug/L                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             | 108-88-3                                                                                                                                                                                        |        |
| n&p-Xylene                                                                                                                                                                                                                                                                                                   | 106 ug/L                                                                                                                                                                                                                                                                                                                                | 2.                                                                                                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| -Xylene                                                                                                                                                                                                                                                                                                      | 98.9 ug/L                                                                                                                                                                                                                                                                                                                               | 1.                                                                                                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| -Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                      | 103 %                                                                                                                                                                                                                                                                                                                                   | 87-10                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                                                     | 94 %                                                                                                                                                                                                                                                                                                                                    | 85-11                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| ,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                                     | 97 %                                                                                                                                                                                                                                                                                                                                    | 79-12                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| Foluene-d8 (S)                                                                                                                                                                                                                                                                                               | 103 %                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/08 18:26                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 |        |
| oldene-do (o)                                                                                                                                                                                                                                                                                                | 103 %                                                                                                                                                                                                                                                                                                                                   | 70-12                                                                                                                       | ) 1                                               |                                                                                                                                                                                                                                                                                                                                                                                                          | 06/06/06 16.26                                                                                                                                                                                                                                                             | 2037-20-3                                                                                                                                                                                       |        |
| Sample: 1468 CARDINAL A                                                                                                                                                                                                                                                                                      | Lab ID: 9224584                                                                                                                                                                                                                                                                                                                         | <b>4011</b> Collected: 07/3                                                                                                 | 0/08 16:50                                        | Received: 08                                                                                                                                                                                                                                                                                                                                                                                             | /01/08 07:55 N                                                                                                                                                                                                                                                             | Matrix: Water                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 | Qual   |
| Parameters                                                                                                                                                                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                                                                 | Units Report Limit                                                                                                          | DF                                                | Prepared                                                                                                                                                                                                                                                                                                                                                                                                 | Analyzed                                                                                                                                                                                                                                                                   | CAS No.                                                                                                                                                                                         | Quai   |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                         | Units Report Limit  EPA 8270 by SIM Prepa                                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | Analyzed                                                                                                                                                                                                                                                                   | CAS No.                                                                                                                                                                                         | - Quai |
| 270 MSSV PAH by SIM SPE                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         | EPA 8270 by SIM Prepa                                                                                                       | ation Meth                                        | nod: EPA 3535                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed 08/13/08 15:43                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 | - Quai |
| 270 MSSV PAH by SIM SPE                                                                                                                                                                                                                                                                                      | Analytical Method:                                                                                                                                                                                                                                                                                                                      | EPA 8270 by SIM Prepa<br>2.                                                                                                 | ation Meth                                        | nod: EPA 3535<br>08/05/08 00:00                                                                                                                                                                                                                                                                                                                                                                          | 08/13/08 15:43                                                                                                                                                                                                                                                             | 83-32-9                                                                                                                                                                                         | Qual   |
| 270 MSSV PAH by SIM SPE<br>acenaphthene<br>acenaphthylene                                                                                                                                                                                                                                                    | Analytical Method:<br>ND ug/L<br>ND ug/L                                                                                                                                                                                                                                                                                                | EPA 8270 by SIM Prepa<br>2.<br>1.                                                                                           | ation Meth                                        | nod: EPA 3535<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                                                                                                                        | 08/13/08 15:43<br>08/13/08 15:43                                                                                                                                                                                                                                           | 83-32-9<br>208-96-8                                                                                                                                                                             | Qual   |
| 270 MSSV PAH by SIM SPE<br>acenaphthene<br>acenaphthylene<br>anthracene                                                                                                                                                                                                                                      | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L                                                                                                                                                                                                                                                                                        | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05                                                                                   | ation Meth                                        | nod: EPA 3535<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                                                                                                      | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                                                                                                                                         | 83-32-9<br>208-96-8<br>120-12-7                                                                                                                                                                 | - Quai |
| 270 MSSV PAH by SIM SPE Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene                                                                                                                                                                                                                            | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L                                                                                                                                                                                                                                                                               | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1                                                                            | ation Meth  1  5  1  0  1  1  1  1  1  1  1       | nod: EPA 3535<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                                                                                    | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                                                                                                                       | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3                                                                                                                                                      | Qual   |
| 270 MSSV PAH by SIM SPE Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene                                                                                                                                                                                                             | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L  ND ug/L  ND ug/L                                                                                                                                                                                                                                                             | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2                                                                     | ation Meth  1  5  1  0  1  1  1  1  1  1  1       | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                                                                 | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                                                                                                     | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8                                                                                                                                           | Quai   |
| 270 MSSV PAH by SIM SPE Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene                                                                                                                                                                                        | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L  ND ug/L  ND ug/L  ND ug/L                                                                                                                                                                                                                                                    | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3                                                              | ation Meth  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                                               | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                                                                                   | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2                                                                                                                               | Qual   |
| Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene                                                                                                                                                                                                          | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L  ND ug/L  ND ug/L  ND ug/L  ND ug/L  ND ug/L                                                                                                                                                                                                                                  | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2                                                       | ation Meth  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                             | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                                                                 | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2                                                                                                                   | Qual   |
| Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene                                                                                                                                                                                     | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L                                                                                                                                                                                                                | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2                                                | ation Meth  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                           | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                                                                 | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9                                                                                                       | Qual   |
| 270 MSSV PAH by SIM SPE Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene                                                                                                                                     | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L                                                                                                                                                                                              | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.2                                         | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                           | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                                               | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9                                                                                           | Qual   |
| 270 MSSV PAH by SIM SPE Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene                                                                                                               | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L                                                                                                                                                                            | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1                                         | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                         | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                                             | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3                                                                                | Quai   |
| 270 MSSV PAH by SIM SPE Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene                                                                                                               | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L                                                                                                                               | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1<br>0.2                                  | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                       | 08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43<br>08/13/08 15:43                                                                                           | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0                                                                    | Qual   |
| Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Eluoranthene Eluoranthene Eluoranthene                                                                                                | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L                                                                                                             | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1<br>0.2<br>0.3                           | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                   | 08/13/08 15:43<br>08/13/08 15:43                                                                         | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7                                                         | Qual   |
| Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene                                                                               | Analytical Method:  ND ug/L ND ug/L 0.058 ug/L ND ug/L                                                                                                                                  | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1<br>0.2<br>0.3<br>0.3                    | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                 | 08/13/08 15:43<br>08/13/08 15:43                                                       | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5                                             | Quai   |
| Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Eluoranthene Eluoranthene Eluoranthene Eluoranthene Hudeno(1,2,3-cd)pyrene -Methylnaphthalene                                           | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L                                                       | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1<br>0.2<br>0.3<br>0.3<br>0.2<br>0.3      | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00                                                                                                             | 08/13/08 15:43<br>08/13/08 15:43                                     | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0                                  | Qual   |
| Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene ndeno(1,2,3-cd)pyrene I-Methylnaphthalene                                                            | Analytical Method:  ND ug/L ND ug/L 0.058 ug/L ND ug/L                                                                                                          | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1<br>0.2<br>0.3<br>0.3<br>0.2<br>2.<br>2. | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00                                                                         | 08/13/08 15:43<br>08/13/08 15:43                   | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6                       | Quai   |
| Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene ndeno(1,2,3-cd)pyrene 1-Methylnaphthalene Naphthalene                                                             | Analytical Method:  ND ug/L  ND ug/L  0.058 ug/L  ND ug/L | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1<br>0.2<br>0.3<br>0.3<br>0.2<br>2.<br>2. | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00                                     | 08/13/08 15:43<br>08/13/08 15:43 | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3            | Qual   |
| Parameters  8270 MSSV PAH by SIM SPE  Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene Paphthalene Phenanthrene | Analytical Method:  ND ug/L ND ug/L 0.058 ug/L ND ug/L                                                                                                          | EPA 8270 by SIM Prepa<br>2.<br>1.<br>0.05<br>0.1<br>0.2<br>0.3<br>0.2<br>0.2<br>0.1<br>0.2<br>0.3<br>0.3<br>0.2<br>2.<br>2. | ation Meth                                        | 08/05/08 00:00<br>08/05/08 00:00 | 08/13/08 15:43<br>08/13/08 15:43                   | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3<br>85-01-8 | Qual   |

Date: 08/14/2008 04:21 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 29







Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## **ANALYTICAL RESULTS**

Project:

**LAUREL BAY 7/30/08** 

Pace Project No.: 9224584

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab ID: 9224584011                                                                                                                                                                                                                                                                                                      | Collected: 07/30/0                                                                  | 8 16:50                                                                                     | Received: 08                                                                                                                                                                                                                                                                                                               | 3/01/08 07:55 N                                                                                                                                                                                                                                                                              | Matrix: Water                                                                                                                                                                                     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results Units                                                                                                                                                                                                                                                                                                           | Report Limit                                                                        | DF                                                                                          | Prepared                                                                                                                                                                                                                                                                                                                   | Analyzed                                                                                                                                                                                                                                                                                     | CAS No.                                                                                                                                                                                           | Qua |
| 270 MSSV PAH by SIM SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analytical Method: EPA                                                                                                                                                                                                                                                                                                  | 8270 by SIM Preparati                                                               | ion Meth                                                                                    | od: EPA 3535                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |     |
| Nitrobenzene-d5 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52 %                                                                                                                                                                                                                                                                                                                    | 50-150                                                                              | 1                                                                                           | 08/05/08 00:00                                                                                                                                                                                                                                                                                                             | 08/13/08 15:43                                                                                                                                                                                                                                                                               | 4165-60-0                                                                                                                                                                                         |     |
| 2-Fluorobiphenyl (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51 %                                                                                                                                                                                                                                                                                                                    | 50-150                                                                              | 1                                                                                           | 08/05/08 00:00                                                                                                                                                                                                                                                                                                             | 08/13/08 15:43                                                                                                                                                                                                                                                                               | 321-60-8                                                                                                                                                                                          |     |
| Terphenyl-d14 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67 %                                                                                                                                                                                                                                                                                                                    | 50-150                                                                              | 1                                                                                           | 08/05/08 00:00                                                                                                                                                                                                                                                                                                             | 08/13/08 15:43                                                                                                                                                                                                                                                                               | 1718-51-0                                                                                                                                                                                         |     |
| 3260 MSV Low Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analytical Method: EPA                                                                                                                                                                                                                                                                                                  | 8260                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |     |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND ug/L                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                 | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               | 71-43-2                                                                                                                                                                                           |     |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ug/L                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                 | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               | 100-41-4                                                                                                                                                                                          |     |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.3 ug/L                                                                                                                                                                                                                                                                                                                | 1.0                                                                                 | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               | 91-20-3                                                                                                                                                                                           | C8  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND ug/L                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                 | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               | 108-88-3                                                                                                                                                                                          |     |
| n&p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND ug/L                                                                                                                                                                                                                                                                                                                 | 2.0                                                                                 | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               | 1330-20-7                                                                                                                                                                                         |     |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND ug/L                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                 | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |     |
| 1-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98 %                                                                                                                                                                                                                                                                                                                    | 87-109                                                                              | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |     |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97 %                                                                                                                                                                                                                                                                                                                    | 85-115                                                                              | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |     |
| 1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 %                                                                                                                                                                                                                                                                                                                   | 79-120                                                                              | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |     |
| Toluene-d8 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100 %                                                                                                                                                                                                                                                                                                                   | 79-120                                                                              | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/07/08 22:59                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |     |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 /6                                                                                                                                                                                                                                                                                                                  | 70-120                                                                              | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 00/01/00 22.59                                                                                                                                                                                                                                                                               | 2037-20-3                                                                                                                                                                                         |     |
| Sample: 1177 BOBWHITE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lab ID: 9224584012                                                                                                                                                                                                                                                                                                      | Collected: 07/30/0                                                                  | 8 15:00                                                                                     | Received: 08                                                                                                                                                                                                                                                                                                               | /01/08 07:55 N                                                                                                                                                                                                                                                                               | Matrix: Water                                                                                                                                                                                     |     |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results Units                                                                                                                                                                                                                                                                                                           | Report Limit                                                                        | DF                                                                                          | Prepared                                                                                                                                                                                                                                                                                                                   | Analyzed                                                                                                                                                                                                                                                                                     | CAS No.                                                                                                                                                                                           | Qua |
| 270 MSSV PAH by SIM SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analytical Method: EPA                                                                                                                                                                                                                                                                                                  | 3270 by SIM Preparati                                                               | ion Meth                                                                                    | od: EPA 3535                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                 |     |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ug/L                                                                                                                                                                                                                                                                                                                 | 2.0                                                                                 | 1                                                                                           | 08/05/08 00:00                                                                                                                                                                                                                                                                                                             | 08/13/08 16:05                                                                                                                                                                                                                                                                               | 83-32-9                                                                                                                                                                                           |     |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND ug/L                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                 | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/13/08 16:05                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |     |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND ug/L                                                                                                                                                                                                                                                                                                                 | 0.050                                                                               |                                                                                             |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         |                                                                                     | 1                                                                                           | 08/05/08 00:00                                                                                                                                                                                                                                                                                                             | 08/13/08 16:05                                                                                                                                                                                                                                                                               | 120-12-7                                                                                                                                                                                          |     |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                         |                                                                                     | 1                                                                                           |                                                                                                                                                                                                                                                                                                                            | 08/13/08 16:05                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND ug/L                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                | 1                                                                                           | 08/05/08 00:00                                                                                                                                                                                                                                                                                                             | 08/13/08 16:05                                                                                                                                                                                                                                                                               | 56-55-3                                                                                                                                                                                           |     |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND ug/L<br>ND ug/L                                                                                                                                                                                                                                                                                                      | 0.10<br>0.20                                                                        | 1                                                                                           | 08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                                                           | 08/13/08 16:05<br>08/13/08 16:05                                                                                                                                                                                                                                                             | 56-55-3<br>50-32-8                                                                                                                                                                                |     |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND ug/L<br>ND ug/L<br>ND ug/L                                                                                                                                                                                                                                                                                           | 0.10<br>0.20<br>0.30                                                                | 1<br>1<br>1                                                                                 | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                                         | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                                                                                                                                           | 56-55-3<br>50-32-8<br>205-99-2                                                                                                                                                                    |     |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L                                                                                                                                                                                                                                                                                | 0.10<br>0.20<br>0.30<br>0.20                                                        | 1<br>1<br>1<br>1                                                                            | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                                       | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                                                                                                                         | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2                                                                                                                                                        |     |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L                                                                                                                                                                                                                                                                     | 0.10<br>0.20<br>0.30<br>0.20<br>0.20                                                | 1<br>1<br>1<br>1                                                                            | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                                     | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                                                                                                       | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9                                                                                                                                            |     |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L                                                                                                                                                                                                                                                          | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10                                        | 1<br>1<br>1<br>1<br>1                                                                       | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                                   | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                                                                                     | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9                                                                                                                                |     |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L<br>ND ug/L                                                                                                                                                                                                                                               | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20                                | 1<br>1<br>1<br>1<br>1<br>1                                                                  | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                                                 | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                                                                   | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3                                                                                                                     | ¥   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Cluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND ug/L                                                                                                                                                                                                                                         | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20<br>0.30                        | 1<br>1<br>1<br>1<br>1<br>1                                                                  | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                                               | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                                                 | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0                                                                                                         | ,   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND ug/L                                                                                                                                                                                                                                 | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20<br>0.30                        | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                                             | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                               | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7                                                                                              | *   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND ug/L                                                                                                                                                                                                                         | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20<br>0.30                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                           | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                             | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5                                                                                  | ¥   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene -Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ug/L                                                                                                                                                                                                                                 | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20<br>0.30                        | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00<br>08/05/08 00:00                                                                                                                                           | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                                               | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5                                                                                  | ,   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Cluoranthene Cluorene ndeno(1,2,3-cd)pyrene -Methylnaphthalene -Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND ug/L                                                                                                                                                                                                                         | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20<br>0.30<br>0.31                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 08/05/08 00:00<br>08/05/08 00:00                                                                                                                         | 08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05<br>08/13/08 16:05                                                                                                             | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0                                                                       | *   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene -Methylnaphthalene Japhthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND ug/L                                                                                                                                                                                 | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20<br>0.30<br>0.31<br>0.20<br>2.0 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00                                                                                                                         | 08/13/08 16:05<br>08/13/08 16:05                                                                                           | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6                                                            | ,   |
| denzo(a)pyrene denzo(b)fluoranthene denzo(g,h,i)perylene denzo(k)fluoranthene denzo(k)fluoranthene denzo(k)fluoranthene denzo(a,h)anthracene denzo(a,h)apyrene denzo(a,h)anthracene denzo(a,h)apyrene denzo( | ND ug/L                                                                                                                                                                                                 | 0.10<br>0.20<br>0.30<br>0.20<br>0.20<br>0.10<br>0.20<br>0.30<br>0.31<br>0.20<br>2.0 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                              | 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00                                                                                           | 08/13/08 16:05<br>08/13/08 16:05                                                                         | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3                                                 | ,   |
| denzo(a)pyrene denzo(b)fluoranthene denzo(g,h,i)perylene denzo(k)fluoranthene denzo(k)fluoranthene denzo(k)fluoranthene denzo(a,h)anthracene denzo(a,h)apyrene denzo(a,h)anthracene denzo(a,h)apyrene denzo( | ND ug/L                                                                                                                                                                                 | 0.10 0.20 0.30 0.20 0.20 0.10 0.20 0.30 0.31 0.20 2.0 2.0 1.5                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00                                                                                           | 08/13/08 16:05<br>08/13/08 16:05                                     | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3<br>85-01-8                                      | ,   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Hadeno(1,2,3-cd)pyrene -Methylnaphthalene Methylnaphthalene Methylnaphthalene Methylnaphthalene Methylnaphthalene Methylnaphthalene Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ug/L                                                                                                                                                 | 0.10 0.20 0.30 0.20 0.10 0.20 0.30 0.31 0.20 2.0 2.0 1.5 0.20                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00                                                                            | 08/13/08 16:05<br>08/13/08 16:05                                     | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3<br>85-01-8<br>129-00-0                          | ,   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Hadeno(1,2,3-cd)pyrene -Methylnaphthalene Bendenothalene Bendenothalene Bendenothrene Penanthrene Pyrene Litrobenzene-d5 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND ug/L                                                                                                                                         | 0.10 0.20 0.30 0.20 0.20 0.10 0.20 0.30 0.31 0.20 2.0 2.0 1.5 0.20 0.10             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00                               | 08/13/08 16:05<br>08/13/08 16:05                                     | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3<br>85-01-8<br>129-00-0<br>4165-60-0             | ,   |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene -Methylnaphthalene P-Methylnaphthalene Baphthalene P-Methylnaphthalene Baphthalene P-Methylnaphthalene Baphthalene P-Methylnaphthalene Baphthalene P-Fluorobiphene Bitrobenzene-d5 (S) F-Fluorobiphenyl (S) Ferphenyl-d14 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND ug/L                                                                         | 0.10 0.20 0.30 0.20 0.20 0.10 0.20 0.30 0.31 0.20 2.0 2.0 1.5 0.20 0.10 50-150      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00                               | 08/13/08 16:05<br>08/13/08 16:05 | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3<br>85-01-8<br>129-00-0<br>4165-60-0<br>321-60-8 | 7   |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bibenz(a,h)anthracene Bibenz(a,h)a | ND ug/L | 0.10 0.20 0.30 0.20 0.20 0.10 0.20 0.31 0.20 2.0 2.0 1.5 0.20 0.10 50-150 50-150    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 08/05/08 00:00 | 08/13/08 16:05<br>08/13/08 16:05 | 56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>206-44-0<br>86-73-7<br>193-39-5<br>90-12-0<br>91-57-6<br>91-20-3<br>85-01-8<br>129-00-0<br>4165-60-0<br>321-60-8 |     |

Date: 08/14/2008 04:21 PM

**REPORT OF LABORATORY ANALYSIS** 

Page 13 of 29





## Appendix D Laboratory Analytical Report - Vapor



## **ALS ENVIRONMENTAL**

## RESULTS OF ANALYSIS

Page 1 of 1

Client:AECOMALS Project ID: P1404131Client Sample ID:BEALB1468SG01GS20141008ALS Sample ID: P1404131-006

Client Project ID: JM30- Laurel Bay Military Housing Area, MCAS Beauf / 60272162.FI.WS

Test Code: EPA TO-15 Date Collected: 10/8/14
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 10/9/14
Analyst: Simon Cao Date Analyzed: 10/11/14

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: SC02015

Initial Pressure (psig): -1.43 Final Pressure (psig): 3.67

Canister Dilution Factor: 1.38

| CAS#        | Compound     | Result | LOQ   | LOD   | MDL   | Data         |
|-------------|--------------|--------|-------|-------|-------|--------------|
|             |              | μg/m³  | μg/m³ | μg/m³ | μg/m³ | Qualifier    |
| 71-43-2     | Benzene      | 0.61   | 0.69  | 0.61  | 0.22  | U            |
| 108-88-3    | Toluene      | 0.28   | 0.69  | 0.58  | 0.23  | J            |
| 100-41-4    | Ethylbenzene | 0.59   | 0.69  | 0.59  | 0.22  | $\mathbf{U}$ |
| 179601-23-1 | m,p-Xylenes  | 1.2    | 1.4   | 1.2   | 0.41  | ${f U}$      |
| 95-47-6     | o-Xylene     | 0.57   | 0.69  | 0.57  | 0.21  | ${f U}$      |
| 91-20-3     | Naphthalene  | 0.68   | 0.69  | 0.57  | 0.25  | J            |

U = Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis. LOQ = Limit of Quantitation - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the LOQ but greater than or equal to the MDL.

## Appendix E Regulatory Correspondence



BOARD: Elizabeth M. Hagood Chairman Edwin H. Cooper, III Vice Chairman

Steven G. Kisner

Secretary



Henry C. Scott
Paul C. Aughtry, III

BOARD.

Glenn A. McCall

Coleman F. Buckhouse, MD

## C. Earl Hunter, Commissioner

Promoting and protecting the health of the public and the environment.

## 2 November 2007

Beaufort Military Complex Family Housing ATTN: Kyle Broadfoot 1510 Laurel Bay Blvd. Beaufort, SC 29906

Re:

MCAS - Laurel Bay Housing - 1468 Cardinal

Site ID # 03744

UST Closure Reports received 15 August 2007

**Beaufort County** 

Dear Mr. Broadfoot:

The purpose of this letter is to verify a release of fuel oil at the referenced residence. According to information received by the Department, the source of the release is from past onsite use of fuel oil USTs. To date, initial activities by the facility have included tank removal and soil sampling. Based on the information contained in the closure report, a potential violation of the South Carolina Pollution Control Act has occurred in that there has been an unauthorized release of petroleum to the environment.

Additional assessment activities are required for this site. Specifically the Department requests that a groundwater sampling proposal be generated for this site.

Please submit a groundwater sampling proposal to conduct the necessary assessment and/or remedial measures at this site no later than 29 February 2007. Should you have any questions, please contact me at 803-898-3553 (office phone), 803-898-2893 (fax) or bishopma@dhec.sc.gov.

Sincerely,

Michael Bishop, Hydrogeologist Groundwater Quality Section

Bureau of Water

cc:

Region 8 District EQC

United States Marine Corps Air Station, Commanding Officer, Attention: S-4 NREAO (William Drawdy), P.O.

Box 55001, Beaufort, SC 29904-5001

Technical File



#### C. Earl Hunter, Commissioner

Promoting and protecting the health of the public and the environment.

## 8 December 2008

Commanding Officer

ATTN: S-4 NREAO (Craig Ehde)

**MCAS** 

PO Box 55001

Beaufort, SC 29904-5001

Re:

MCAS - Laurel Bay Housing - 1468 Cardinal

Site ID # 03744

Groundwater Sampling Results received 6 November 2008

**Beaufort County** 

## Dear Mr. Ehde:

Per the Department's request, a groundwater sample was collected from the referenced site. The groundwater results were reported as non-detect. Based on the information and analytical data submitted, the Department recognizes that MCAS has adequately addressed the known environmental contamination identified on the property to date in accordance with the approved scope of work. Consequently, no further investigation is required at this time. Please note, this statement pertains only to the portion of the site addressed in the referenced report and does not apply to other areas of the site and/or any other potential regulatory violations. Further, the Department retains the right to request further investigation if deemed necessary.

Should you have any questions, please contact me at 803-896-4179 (office phone), 803-896-6245 (fax) or cookejt@dhec.sc.gov.

Sincerely,
AST Petroleum Restoration
& Site Environmental Investigations Section
Land Revitalization Division
Bureau of Land and Waste Management
SC Dept. of Health & Environmental Control

Jan T. Cooke, Hydrogeologist

B. Thomas Knight, Manager

CC:

Region 8 District EQC

an J. Cook

Tri-Command Communities; Attn: Mr. Robert Bible; 600 Laurel Bay Road Beaufort, SC

29906

Technical File



## W. Marshall Taylor Jt., Acting Director Promoting and protecting the health of the public and the environment

## Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

March 10, 2015

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United State Marine Corps Air Station
Post Office Box 55001
Beaufort, SC 29904-5001

RE: Approval

Draft Final Technical Memorandum-Soil Gas Sampling Results

October 2014

Laurel Bay Military Housing Area

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced soil gas sampling results for multiple former heating oil tank sites on February 2, 2015. During tank removal, contaminated soil had been observed at the former tank sites selected for this study. The purpose of this study was to evaluate whether the constituents observed in soil have potential for exposure and risk to residents through impacted vapor intrusion pathways. Sampling was performed at fourteen (14) former heating oil tank sites with a range of VOCs present in the soil at the time of tank removal. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the soil gas sampling results. The Department has generated no comments on this report. Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary. If you have any questions, please contact me at <a href="mailto:petruslb@dhec.sc.gov">petruslb@dhec.sc.gov</a> or 803-898-0294.

Sincerely,

Laurel Petrus

LIPE

Department of Defense Corrective Action Section

Cc: Russell Berry, EQC Region 8

Shawn Dolan, Resolution Consultants